
High throughput screening with machine learning

Oleksandr Gurbych
SoftServe Inc.,

2d Sadova Str., 79021 Lviv, Ukraine
ogurb@softserveinc.com

Maksym Druchok
SoftServe Inc.,

2d Sadova Str., 79021 Lviv, Ukraine
Institute for Condensed Matter Physics

1 Svientsitskii Str., 79011, Lviv, Ukraine
mdruc@softserveinc.com

Dzvenymyra Yarish
SoftServe Inc.,

2d Sadova Str., 79021 Lviv, Ukraine
dyari@softserveinc.com

Sofiya Garkot
Ukrainian Catholic University

17 Svientsitskii Str., 79011, Lviv, Ukraine
garkot@ucu.edu.ua

Abstract

This study assesses the efficiency of several popular machine learning approaches
in the prediction of molecular binding affinity: CatBoost, Graph Attention Neural
Network, and Bidirectional Encoder Representations from Transformers. The mod-
els were trained to predict binding affinities in terms of inhibition constants Ki for
pairs of proteins and small organic molecules. First two approaches use thoroughly
selected physico-chemical features, while the third one is based on textual molec-
ular representations – it is one of the first attempts to apply Transformer-based
predictors for the binding affinity. We also discuss the visualization of attention
layers within the Transformer approach in order to highlight the molecular sites
responsible for interactions. All approaches are free from atomic spatial coordi-
nates thus avoiding bias from known structures and being able to generalize for
compounds with unknown conformations. The achieved accuracy for all suggested
approaches prove their potential in high throughput screening.

1 Introduction

Initial stages of drug discovery require localization of a disease cause, understanding of the molecular
mechanism, then suggesting and testing drug leads. On a cellular level, a drug molecule binds to
a target biomolecule and amends its function. Once the disease target has been identified a list
of drug candidates is drafted and screened for the target-candidate binding affinities. Running in
silico high throughput screening helps shrink the initial pool of in vitro tests by eliminating weakly
scored candidates. We observe the increasing amount of physico- and bio-chemical data as well as
difficulties with massive data arrays processing, which boosts the development and application of ML
models to this field.

One of the screening techniques is the assessment of receptor-ligand binding affinities. The receptor-
ligand binding can be illustrated with a classic example of competitive inhibition when malonate
blocks the activity of succinate dehydrogenase. Succinate dehydrogenase is an enzyme that par-
ticipates in a reaction chain that provides energy for cells. Its particular function is to conduct
dehydrogenation on succinate molecules. However, if the active site of dehydrogenase is occupied by
slightly different malonate (one CH2 group is missing) no catalytic reaction occurs. Dehydrogenase is
the receptor, whereas succinate and malonate are ligands competing for the active site of the receptor.
The ligand with stronger attraction (binding affinity) wins the competition deciding whether the
reaction chain is activated or blocked.
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There is a number of studies applying ML techniques to the affinity prediction problem [1–8] and the
methods vary from supporting vector machine, decision trees, random forest to deep neural networks.
Of course, the list is not complete, it rather references representative papers in the field. It is difficult
to compare them directly since they use different metrics, affinity characteristics, and datasets. In
particular, the early researches started with only hundreds of affinity samples, while more recent
studies advanced with growing availability of data.

In this contribution we test three machine learning algorithms – CatBoost [9], Graph Attention
Neural Network, and Bidirectional Encoder Representations from Transformers [10, 11]. All these
techniques are used to predict the binding affinity expressed as inhibitory constant Ki. We show that
the considered approaches can be used for high throughput screening to save the time and resources
on drug discovery stage by prioritizing more promising candidates for further development.

2 Materials and methods

The dataset used in this study is compiled out of four databases – BindingDB [12], PDBbind [13],
Binding MOAD [14], BioLIP [15] A plain concatenation of datasets results in a number of duplicated
protein-ligand pairs, whereas the inhibition constantsKi need to be inspected for nonphysical extreme
concentrations. The inhibition constants are ligand concentrations required to produce half maximum
inhibition; they are expressed in nanomoles. In concentration measurements the error increases
proportionally to the concentration itself, therefore, it is convenient to work with decimal logarithm
of inhibition constants log10Ki. Such a conversion helps balance the error contributions at different
concentration ranges. After the whole data pre-processing the collected dataset consists of ≈350k
unique receptor-ligand pairs with corresponding values of log10Ki.

The dataset consists of receptors (target proteins) represented in FASTA format [16, 17] and the
ligands (inhibitors) – in SMILES format [18, 19]. Both formats are one-line sequence notations and
do not use spatial coordinates; it was our essential requirement so that the trained models can make
predictions on novel receptors and ligands with unknown conformations. Otherwise, if coordinates
are known one can develop coordinate-based predictors, like KDEEP approach [4] splitting space
into 3D grid and assigning each elementary cube a set of corresponding descriptors.
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Figure 1: Histogram for binding affini-
ties as decimal logarithm of inhibition
constants log10Ki. The bare Ki con-
stants are expressed in nanomoles.

In Fig. 1 we show the distribution of collected log10Ki val-
ues. It has symmetric shape with a slight imbalance for the
regions of strong and moderate inhibitors (log10Ki < 4,
i.e. Ki < 10µM), while inactive compounds (with Ki’s
above 10µM) are less populated. One of possible ways
to balance the dataset is to generate augmentations: most
popular augmentations over SMILES strings are based on
conformation variations or different atom enumerations
(see for example Refs. [20,21]). However, the ligand repre-
sentations utilized in our study are insensitive to these tech-
niques, thus we decided to keep the dataset in the original
form rather than synthetically generating new inhibitors
without knowledge about their inhibition constants.

The first machine learning technique of choice is Cat-
Boost Regressor (CB), a gradient boosting algorithm on
decision trees. We examined various physico-chemical
features to represent receptors and ligands. As a result,
we chose ECFP4 fingerprints for ligands, while receptors
were characterized by a set of features based on different
properties of amino acids. These properties include charge,
van der Waals volume, solvent accessible area, buried area,
flexibility, folding index, hydrophobicity, isoelectric point,
polarity, refractivity, aliphatic index, numbers of H-bond

donors and acceptors, and number of disulfides. All features for each receptor-ligand pair were
combined into one vector and regressed towards corresponding log10Ki value.

The second technique is Graph Attention Neural Network (GANN). We designed the architecture
of this model to take two inputs: featurized graphs for receptor and ligand. The ligand graphs consist
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of nodes (all heavy atoms) and edges (all intramolecular bonds). The ligand node and edge features
encode atom and bond types, charges, number of electrons, hybridization, aromaticity, etc. The
receptor graphs contain only nodes (amino acids along the protein chain), since all peptide bonds
uniting amino acids are identical. The graphs for ligands were crafted with the help of standard
featurizers, coming with DGL-LifeSci package (https://lifesci.dgl.ai/), whereas for the receptor
graphs we developed a custom featurizer. The receptor node features partially resemble the features
used in the CB approach and include charge, flexibility, number of H-bond donors and acceptors,
hydrophobicity, solvent accessible area, molecular weight, polarity, van der Waals volume, etc. The
graphs are fed into two separate “arms”. The receptor arm is based on Graph Attention network [22]
from DGL-LifeSci. In the SMILES arm we utilized the AttentiveFPGNN realization of Attentive FP
network [23] from the DGL-LifeSci package as well. Outputs of these arms are then concatenated
and regressed with a multilayer perceptron to predict a value of log10Ki.

In contrast to the two above approaches purely dealing with physico-chemical properties, Bidirec-
tional Encoder Representations from Transformers (BERT) treats receptor and ligand sequences
as text strings and constructs representations by jointly conditioning on both left and right context in
all layers, which is crucial to fully capture the intricate inter-dependencies in the chemical structures.
Our model is built of two pre-trained BERT heads (for FASTA and SMILES) and a multilayer
perceptron on top of them. BERT architecture is the same for two inputs: 6 layers, 12 self-attention
heads, hidden size 768. FASTA BERT is pre-trained with the masked language modelling objective
on the subset of UniProtKB protein sequences database, Swiss-Prot consisting of 506k entries [24].
Pre-trained SMILES BERT weights were taken from Ref. [25], optimized on 155k sequences from
publicly available PubChem dataset [26]. We concatenate the averaged final hidden states from
FASTA BERT and SMILES BERT, and use it as an input to the perceptron, which then outputs
log10Ki value. To our best knowledge, it is one of the first attempts to utilize Transformer-like
models as sole predictors of the binding affinity. Worth mentioning here a recent paper by Morris et
al. [27] adopting Transformer approach for the affinity prediction, however, their setup is limited to
single receptor task, thus embeddings are learned for ligand SMILES only.

3 Results

The dataset was randomly split into train, validation, and test subsets with the 80:10:10 ratios. No
specific pre-selection by receptor or ligand families was done. The train and validation parts were
used to train the ML models and monitor their accuracy during the train routine, whereas with the
test subset we evaluated the final models. Such a unified data split was intended to evaluate all three
approaches on the same footing. The best achieved Mean Absolute Error (MAE) scores (in log10Ki

units) on the test subset are CB — 0.60, GANN — 0.64, BERT — 0.51. For example, the MAE of
±0.6 for log10Ki corresponds to a factor 4 (multiplier or divider) to the bare Ki value, which is only
a bit weaker accuracy than experimentally acceptable factor of ≤2. Worth noting that our values of
MAE are lower than 0.71÷1.03 values obtained in Ref. [7] on PDBbind and Astex datatsets [13, 28].
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Figure 2: Mean absolute errors as a func-
tion of experimental inhibition constants.

We plotted bin-averaged MAE as a function of actual
log10Ki for the three methods of choice (see Fig. 2).
One can see high MAE peaks at low and high log10Ki,
with a broad well inbetween. We attribute these peaks to
a low number of data points – the ML models lack the
examples to properly learn extreme cases (see Fig. 1).

In a simpler case of a binary classification “inhibitor
vs. non-inhibitor” (either log10Ki is less or greater
than 4) even high MAE values for low log10Ki (left
band of peaks in Fig. 2) still provide a decent chance
that compound will be correctly classified as inhibitor.
These are the high MAE values for high log10Ki (peaks
on the right) that pose a risk of misclassified type, since
the boundary of log10Ki = 4 is closer to this weakly
reproduced region. In particular, the inhibitor vs. non-
inhibitor classification yields accuracy of 94% for CB
and BERT, while GANN provides 93%. These values
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Figure 3: Left – fragment of human thrombin (orange surface) and a ligand (blue sticks) occupying
its active site with binding atoms (green ovals) defined experimentally. Right – 2D projection of
the ligand with binding atoms highlighted by attention. Green and red spots mark atoms with
attention scores <5% and ≥5%. The plots are made with PyMol (https://pymol.org) and RDKit
(https://www.rdkit.org/) packages.

are comparable with accuracy of 95% reported in a study by Li et al. [6] utilizing Bayesian additive
regression trees.

We also visualized the attention scores ascribed by BERT model to ligands. In general, the attention
scores prioritize elements most relevant to a target task, thus comparing the scores for different
ligand fragments we expected to highlight the ones responsible for binding. However, we noticed
that attention focus is often spread across ligand molecules instead of particular sites. One of such
examples is visualized in Fig. 3 with a complex of human thrombin and a ligand taken from the Protein
Data Bank (http://www.rcsb.org/structure/2ANM). This ligand is known to be a strong inhibitor to
the human thrombin. The left snapshot shows an active site of thrombin molecule (depicted as an
orange surface) occupied by the ligand (blue sticks), the green ovals show the ligand atoms interacting
with the receptor (according to the Protein Data Bank). The right plot shows a planar structure of
the ligand: again, the green ovals denote the interacting atoms, while red and yellow spots indicate
molecular fragments assumed by attention to contribute most to the prediction of affinity of the
ligand to thrombin. One can see that the attention is not only focused on the atoms in ovals. It might
showcase that binding is actually dependent on a full topology of a ligand rather than some particular
sites.

4 Conclusions

This study is aimed to compare three popular machine learning methods in prediction of molecular
binding affinity. The following methods were tested: CatBoost, Graph Attention Neural Network,
and Bidirectional Encoder Representations from Transformers. For development of the first two we
used physico-chemical features in representations of molecules, whereas the third one operated with
FASTA and SMILES notations as text sequences.

The above approaches were tested on the same dataset with fixed split onto same train/validation/test
subsets in order to maintain equal evaluation conditions. The achieved accuracy for the three
considered approaches shows a fair level of prediction, which is only slightly weaker than the
acceptable experimental accuracy. Besides the single-number metric Mean Absolute Error we also
inspect how the deviations behave along the data range of affinities and map the regions of stronger
and weaker confidence. All the considered techniques prove to be lightweight and efficient for high
throughput screening.

We also examine and visualize attention scores for ligands within the Transformer approach. We
expected them to indicate molecular sites responsible for interactions with proteins. However, the
attention often highlights broader parts of molecules, which might be an indication that binding
mechanisms involve larger structural fragments.

Though the class of proteins is wide per se, we believe that the considered approaches can be extended
to a broader range of biomolecules, making them more universal.
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