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Abstract

De novo, in-silico design of molecules is a challenging problem. Here, we introduce
a masked graph model, which learns a distribution over graphs by capturing all
possible conditional distributions over unobserved nodes and edges given observed
ones. We train our model on existing molecular graphs and then sample novel
molecular graphs from it by iteratively masking and replacing different parts of
initialized graphs. We evaluate our approach on the QM9 and ChEMBL datasets
using the distribution-learning benchmark from the GuacaMol framework. The
benchmark contains five metrics: the validity, uniqueness, novelty, KL-divergence
and Fréchet ChemNet Distance scores, the last two of which are measures of the
similarity of the generated samples to the dataset distributions. We find that KL-
divergence and Fréchet scores are anti-correlated with novelty scores. By varying
generation initialization and the fraction of the graph masked and replaced at each
generation step, we can increase the Fréchet score at the cost of novelty. In this
way, we show that our model offers transparent and tunable control of the trade-off
between these metrics. Our model outperforms previously proposed graph-based
approaches and is competitive with SMILES-based approaches.

1 Introduction

We frame graph generation as sampling a graph G from a distribution p?(G) defined over all possible
graphs. As we do not have access to p?(G), it is typically modeled by a distribution pθ(G). Once we
have trained our model on this distribution, we carry out generation by sampling from the trained
model. In this paper, we explore an alternative to modeling the joint distribution pθ(G). Our approach,
masked graph modeling, parameterizes and learns conditional distributions pθ(η|G\η) where η is
a subset of the components (nodes and edges) of G and G\η is a graph without those components.
With these conditional distributions estimated from data, we sample a graph by iteratively updating
its components. At each generation iteration, this involves masking a subset of components and
sampling new values for them according to the corresponding conditional distribution. There are two
advantages to this approach. First, we do not specify an arbitrary order of graph components, unlike
autoregressive (AR) models. Second, learning is exact, unlike in ELBO-based latent variable models.

2 Model

A masked graph model (MGM) operates on a graph G, which consists of a set of N vertices
V = {vi}Ni=1 and a set of edges E = {ei,j}Ni,j=1. A vertex is denoted by vi = (i, ti), where i is the
unique index assigned to it, and ti ∈ Cv = {1, ..., T} is its type, with T the number of node types.
An edge is denoted by ei,j = (i, j, ri,j), where i, j are the indices to the incidental vertices of this
edge and ri,j ∈ Ce = {1, ..., R} is the type of this edge, with R the number of edge types. We use a
single graph neural network to parameterize any conditional distribution induced by a given graph.
We assume that the missing components η of the conditional distribution p(η|G\η) are conditionally
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independent of each other given G\η , with V and E the sets of all vertices and edges in η respectively:

p(η|G\η) =
∏
v∈V

p(v|G\η)
∏
e∈E

p(e|G\η), (1)

We start by embedding the vertices and edges in the graph G\η to get continuous representations
hvi ∈ Rd0 and hei,j ∈ Rd0 respectively, where d0 is the representation space dimensionality [Bengio
et al., 2003]. We pass these representations to a message passing neural network [Gilmer et al., 2017]
with L layers that share parameters. At each layer l, we first update the hidden state of each node vi
by computing its accumulated message u(l)vi using an aggregation function Jv and a spatial residual
connection R between neighboring nodes:

u(l)vi = Jv(h
(l−1)
vi , {h(l−1)vj }j∈N(i), {h(l−1)ei,j }j∈N(i)) +R({h(l−1)vj }j∈N(i)),

Jv(h
(l−1)
vi , {h(l−1)vj }j∈N(i), {h(l−1)ei,j }j∈N(i)) =

∑
j∈N(i)

h(l−1)ei,j · h
(l−1)
vj ,

R({h(l−1)vj }j∈N(i)) =
∑

j∈N(i)

h(l−1)vj ,

h(l)vi = LayerNorm(GRU(h(l−1)vi , u(l)vi )),

where N(i) is the set of indices corresponding to nodes that are in the one-hop neighbourhood of
node vi. GRU [Cho et al., 2014] refers to a gated recurrent unit which updates the representation of
each node using its previous representation and accumulated message. LayerNorm [Ba et al., 2016]
refers to layer normalization.

Similarly, the hidden states of each edge hei,j are updated using the following rule for all j ∈ N(i):

h(l)ei,j = Je(h
(l−1)
vi + h(l−1)vj ),

where Je is a two-layer fully connected network with ReLU activation between the two layers [Nair
and Hinton, 2010, Glorot et al., 2011], to yield a new hidden edge representation. The node and edge
representations from the final layer are then processed by a node projection layer Av : Rd0 → ΛT

and an edge projection layer Ae : Rd0 → ΛR, where ΛT and ΛR are probability simplices over node
and edge types respectively. The result is the distributions p(v|G\η) and p(e|G\η) for all v ∈ V and
all e ∈ E .

Learning We corrupt each graph G from a training dataset D with a corruption process
C(G\η|G). Following work for language models [Devlin et al., 2019], we randomly replace a
fraction αtrain of features of each node and edge with the symbol MASK. We vary αtrain ran-
domly between 0 and 0.2 throughout training. After passing G\η through our model we ob-
tain the conditional distribution p(η|G\η). We maximize the log probability log p(η|G\η) of the
masked components η given the rest of the graph G\η. This results in the optimization problem:
arg maxθ EG∼DEG\η∼C(G\η|G) log pθ(η|G\η).

Generation To begin generation, we initialize a molecule in one of two ways.The first way, training
initialization (TI), uses a random training set graph as an initial graph. The second way, marginal
initialization (MI), initializes each graph component according to a categorical distribution over the
values the component takes in our training set. For example, the probability of an edge having type
r ∈ Ce is equal to the fraction of edges in the training set of type r. We then use an approach motivated
by Gibbs sampling to update graph components iteratively from the learned conditional distributions.
At each generation step, we sample uniformly at random a fraction αgen of components η in the graph
and replace the values of these components with the MASK symbol. We compute the conditional
distribution p(η|G\η) using the model, sample new values for the masked components, and place
these values in the graph. We repeat this procedure for K steps, where K is a hyperparameter.

3 Experiments

Datasets and Evaluation We use two widely used [Gómez-Bombarelli et al., 2016, Simonovsky
and Komodakis, 2018, Li et al., 2018] small-molecule datasets: QM9 [Ruddigkeit et al., 2012,
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Ramakrishnan et al., 2014] and ChEMBL [Mendez et al., 2018]. QM9 has approximately 132,000
molecules with a median and maximum of 9 heavy atoms each and T = 5 atom types. ChEMBL
contains approximately 1,591,000 molecules with a median of 27 and a maximum of 88 heavy atoms
each, with T = 12. For both datasets, each bond is either a no-bond, single, double, triple or aromatic
bond (R = 5). To evaluate our approach, we use distribution-learning metrics from the GuacaMol
benchmark [Brown et al., 2018]: validity, uniqueness, novelty, KL-divergence (KLD) [Kullback
and Leibler, 1951] and Fréchet ChemNet Distance (FCD) [Preuer et al., 2018]. These are all scores
between 0 and 1. Validity, uniqueness and novelty measure the proportion of generated molecules
that are valid, that remain after removing duplicated molecules and that are not dataset molecules
respectively. The KLD and FCD scores measure the similarity of generated samples to the dataset
distribution.

Baselines We train an LSTM [Hochreiter and Schmidhuber, 1997] on QM9 and get a pretrained
LSTM for ChEMBL using the GuacaMol baselines implementation [gua]. We train two Transformers
[Vaswani et al., 2017] of different size on each dataset. Other QM9 results (CharacterVAE [Gómez-
Bombarelli et al., 2016], GrammarVAE [Kusner et al., 2017], GraphVAE [Simonovsky and Ko-
modakis, 2018], MolGAN [Cao and Kipf, 2018]) are from Cao and Kipf [2018]. Other ChEMBL
results (LSTM, Graph MCTS [Jensen, 2018], AAE [Polykovskiy et al., 2018], ORGAN [Guimaraes
et al., 2017], VAE [Simonovsky and Komodakis, 2018] (bidirectional GRU [Cho et al., 2014] encoder,
AR GRU decoder) are from Brown et al. [2018].

Mutual Dependence of GuacaMol Metrics If dependence exists between GuacaMol metrics,
comparing models using a straightforward measure such as sum of metrics may not be reasonable.
We calculate pairwise the Spearman correlation between all metrics using MGM on QM9 (Table 1a),
while varying the masking rate αgen, initialization and number of sampling iterations. We carry out a
similar run for the Transformer Small, Transformer Regular, and LSTM baselines by varying softmax
sampling temperatures at generation (Table 1b). Validity, KLD and FCD scores correlate highly with
each other and negatively with novelty. Uniqueness does not correlate strongly with any metric. This
suggests we can gauge generation quality using a subset of metrics, such as FCD and novelty scores.

Valid Uniq Novel KLD FCD

Valid 1.00 -0.56 -0.83 0.73 0.75
Uniq -0.56 1.00 0.50 -0.32 -0.37
Novel -0.83 0.50 1.00 -0.94 -0.95
KL 0.73 -0.32 -0.94 1.00 0.99
Fréchet 0.75 -0.37 -0.95 0.99 1.00

(a) MGM

Valid Uniq Novel KLD FCD

Valid 1.00 0.03 -0.99 0.98 0.98
Uniq 0.03 1.00 0.00 0.03 0.03
Novel -0.99 0.00 1.00 -0.99 -0.99
KL 0.98 0.03 -0.99 1.00 1.00
Fréchet 0.98 0.03 -0.99 1.00 1.00

(b) LSTM, Transformer Small and Transformer Regular

Table 1: Spearman correlation between metrics from QM9 results using MGM and AR models.
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Figure 1: Plots of the Fréchet ChemNet Distance score against novelty.

Analysis of Representative Metrics We plot the FCD and novelty scores against each other in
Figure 1. On both QM9 and ChEMBL, as novelty increases, the FCD score decreases for the MGMs
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as well as for the AR LSTM and Transformer models. We also see that the line’s slope has a lower
magnitude for the MGMs than for the AR models. This shows that our model trades off novelty for
similarity to the dataset distributions more effectively than the baseline models. This gives us a higher
degree of controllability in generating samples that are optimized towards either metric. On the QM9
plot, we see that several MGM points are beyond each baseline model’s Pareto frontier. On ChEMBL,
the AR models generally achieve a higher combination of novelty and FCD score than do the MGMs.

Effect of Generation Hyperparameters on Generation Quality Table 2 shows how masking
rate and initialization affect generation, using scores at the final generation step. On QM9, using MI
as compared to TI leads to slightly higher validity and novelty but lower KLD and FCD scores. On
ChEMBL, MI results in validity scores close to 0, hence we only consider TI in Table 2. On both
datasets, novelty increases significantly when increasing the masking rate while the validity, KLD
and FCD scores drop. We can trade off between metrics by adjusting initialization and masking rate.

Dataset Mask Rate Graph Init Valid Uniq Novel KL Div Fréchet Dist

QM9

10% train 0.886 0.978 0.518 0.966 0.842
10% marginal 0.922 0.972 0.568 0.930 0.645
20% train 0.678 0.988 0.789 0.901 0.544
20% marginal 0.719 0.982 0.792 0.893 0.529

ChEMBL 1% train 0.849 1.000 0.722 0.987 0.845
5% train 0.558 1.000 0.952 0.869 0.396

Table 2: Effect of varying masking rate and graph initialization on MGM benchmark results.

Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

CharacterVAE [Gómez-Bombarelli et al., 2016] 0.103 0.675 0.900 N/A N/A
GrammarVAE [Kusner et al., 2017] 0.602 0.093 0.809 N/A N/A

LSTM [Hochreiter and Schmidhuber, 1997] (ours) 0.980 0.962 0.138 0.998 0.984
Transformer Sml [Vaswani et al., 2017] (ours) 0.947 0.963 0.203 0.987 0.927
Transformer Reg [Vaswani et al., 2017] (ours) 0.965 0.957 0.183 0.994 0.958

G
ra

ph

GraphVAE [Simonovsky and Komodakis, 2018] 0.557 0.760 0.616 N/A N/A
MolGAN [Cao and Kipf, 2018] 0.981 0.104 0.942 N/A N/A

NAT GraphVAE [Kwon et al., 2019] 0.945 0.343 0.806 N/A N/A
MGM (ours proposed) 0.886 0.978 0.518 0.966 0.842

Table 3: QM9 distributional results. Baseline results are taken from [Cao and Kipf, 2018] and [Kwon
et al., 2019].

Model Valid Uniq Novel KL Div Fréchet Dist

SM
IL

E
S

AAE [Polykovskiy et al., 2018] 0.822 1.000 0.998 0.886 0.529
ORGAN [Guimaraes et al., 2017] 0.379 0.841 0.687 0.267 0.000

VAE [Gómez-Bombarelli et al., 2016] 0.870 0.999 0.974 0.982 0.863
LSTM [Hochreiter and Schmidhuber, 1997] 0.959 1.000 0.912 0.991 0.913

Transformer Sml [Vaswani et al., 2017] (ours) 0.920 0.999 0.939 0.968 0.859
Transformer Reg [Vaswani et al., 2017] (ours) 0.961 1.000 0.846 0.977 0.883

G
ra

ph

Graph MCTS [Jensen, 2018] 1.000 1.000 0.994 0.522 0.015
NAT GraphVAE [Kwon et al., 2019] 0.830 0.944 1.000 0.554 0.016

MGM (ours proposed) 0.849 1.000 0.722 0.987 0.845

Table 4: ChEMBL distributional results. Baseline results are taken from [Brown et al., 2018] and
[Kwon et al., 2019].

Comparison with Baseline Models We select MGM results from Table 2 for each dataset cor-
responding to the highest geometric mean among all five metrics. On QM9 (Table 3), our model
performs comparably to existing methods. Our approach has higher validity and uniqueness and
lower novelty scores compared to CharacterVAE [Gómez-Bombarelli et al., 2016], GrammarVAE
[Kusner et al., 2017], GraphVAE [Simonovsky and Komodakis, 2018] and MolGAN [Cao and Kipf,
2018]. Our model has lower validity and novelty but significantly higher uniqueness scores than
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non-AR graph VAE [Kwon et al., 2019]. Compared to the LSTM and Transformer models, our model
has lower validity, KLD and FCD scores but higher uniqueness and novelty scores.

On ChEMBL (Table 4), our approach outperforms existing graph-based methods. Compared to
graph MCTS [Jensen, 2018] and non-AR graph VAE [Kwon et al., 2019], our approach shows lower
novelty but significantly higher KLD and FCD scores. The baseline graph-based models do not
capture the properties of the dataset distributions, as shown by their low KLD and almost-zero FCD
scores. Our approach is competitive with SMILES-based models. It outperforms the GAN-based
model (ORGAN) across all metrics and outperforms the adversarial autoencoder (AAE) on all but
the uniqueness (both are 1.00) and novelty scores. It performs comparably to the VAE with AR GRU
[Cho et al., 2014] decoder on all metrics except novelty. Our approach lags behind the SMILES-
based LSTM and Transformer models. It outperforms both Transformer models on KLD score but
underperforms them on validity, novelty and FCD score. Our approach also results in lower scores
across most metrics when compared to the LSTM model.
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