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Abstract

Protein sequence modeling typically does not use randomized data augmentation
procedures during training due to the unpredictable functional changes introduced
by even simple sequence modifications. However, in this paper, we empirically
explore a set of simple string manipulations, when fine-tuning semi-supervised
protein models. We compare to the Tasks Assessing Protein Embeddings (TAPE)
baseline models, with methods that vary from the baseline methods only in the data
augmentations and representation learning procedure, and demonstrate improve-
ments between 1% and 41% to the baseline scores on the TAPE validation tasks,
with both linear evaluation and full fine-tuning on downstream tasks. We find the
most consistent results using domain-motivated transformations, such as amino
acid replacement, as well as subsampling of the protein sequence. In rarer cases,
we even find that information-destroying augmentations, such as random sequence
shuffling, can improve performance.

1 Introduction

In this paper, we take the uncertainty arising from the unknown effect of simple data augmentations
in protein sequence modeling as an empirical challenge that deserves a robust assessment. We focus
on fine-tuning previously published self-supervised models that are typically used for representation
learning with protein sequences, viz. the transformer-based methods of Rao et al. [2019]. We
demonstrate that the protein sequence representations learned by fine-tuning the baseline models with
data augmentations results in relative improvements between 1% (secondary structure accuracy) and
41% (fluorescence ρ), as assessed with linear evaluation for all TAPE tasks we studied. When fine-
tuning the same representations during supervised learning on each TAPE task, we show significant
improvement as compared to baseline for 3 out of 4 TAPE tasks, with the fourth (fluorescence) within
1σ in performance. We also study the effect of increasingly aggressive data augmentations: when
fine-tuning baseline models with contrastive learning [Hadsell et al., 2006, Chen et al., 2020] we see a
local maximum in downstream performance as a function of the quantity of data augmentation, with
“no augmentations” generally under-performing modest amounts of data augmentations. Conversely,
performing the same experiments but using masked-token prediction instead of contrastive learning,
we detect a minor trend of decreasing performance on the TAPE tasks as we more frequently use data
augmentations during fine-tuning. We interpret this as evidence that contrastive learning techniques,
which require the use of data augmentation, are important methods that can be used to improve
generalizibility of protein models.
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(a) Replacement (Dictionary) (b) Replacement (Alanine) (c) Global Random Shuffling

(d) Local Sequence Shuffling (e) Sequence Reversion (f) Subsampling

Figure 1: Diagram of data augmentations. We study randomly replacing residues (with probability p)
with (a) a chemically-motivated dictionary replacement or (b) the single amino acid alanine. We also
consider randomly shuffling either (c) the entire sequence or (d) a local region only. Finally, we look
at (e) reversing the whole sequence and (f) subsampling to a subset of the original.

Figure 2: Diagram of experimental approach (see Sect. 2).Dashed boxes indicate the different 4 steps.
In each box, we include the general model architectures, with major sub-modules in different colors.
The model freezer freezes the semi-supervised model weights during linear evaluation.

2 Method

Evaluation procedure.— To attempt to control external variables, we study the following restricted
setting; we provide the procedural diagram in Figure 2. This study includes four major steps:
1. Baseline: A self-supervised model M0 is directly obtained from Rao et al. [2019], without
modification, which is trained with masked-token prediction on Pfam protein sequence data [El-
Gebali et al., 2019]. 2. Augmented training on validation set: We fine-tune M0 on subsets of the
Pfam dataset, given a set of pre-defined data transformations. We define Maug as the final fine-tuned
model from the starting point M0. We adopt two methods during fine-tuning — a contrastive task
with SimCLR loss described in Chen et al. [2020] and a masked-token task (exponentiated cross
entropy loss) — as well as different combinations of data augmentations. 3. Linear evaluation
on TAPE: To assess the representations learned by Maug, we evaluate performance on four TAPE
downstream training tasks [Rao et al., 2019]: stability, fluorescence, remote homology, and secondary
structure. For consistency, we use the same training, validation, and testing sets. The first two tasks
are evaluated by Spearman correlation (ρ) to the ground truth and the latter two by classification
accuracy. Descriptions of the four tasks can be found in Rao et al. [2019]. We perform linear
evaluation by freezeing the self-supervised part (Fig. 2). 4. Full fine-tuning on TAPE: For the
best-performing augmented models and associated data augmentations in the linear evaluation task
(either MCL

aug or MMT
aug ), we further study how the models improve when allowing the parameters of

Maug to vary along with the linear model during the task-specific supervised model-tuning.
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Table 1: Best linear evaluation results. Bold refers outperformance to the TAPE baselines; and red is
the task-wise best-performing result. MT and CL refer to training with masked-token prediction and
contrastive learning, respectively. Stability and fluorescence are scored by Spearman correlation and
remote homology and secondary structure by classification accuracy. Bootstrap standard deviations
(σ) are reported per task by taking the maximum error found for any of the models by bootstrapping
the testing results 5,000 times, with convergence after ∼ 3, 000 samples.

Scenario Stability Fluor. Remote Homology 2nd Structure

MT: TAPE Baseline 0.498 0.256 [0.200, 0.625, 0.231] [0.699, 0.756, 0.727]
MT: No Aug. (γ = 0) 0.534 0.275 [0.206, 0.636, 0.241] [0.706, 0.771, 0.729]
MT: Best Aug. 0.516 0.301 [0.207, 0.637, 0.241] [0.716, 0.771, 0.735]

CL: No Aug. 0.512 0.334 [0.146, 0.529, 0.163] [0.667, 0.725, 0.678]
CL: Single Aug. 0.562 0.343 [0.183, 0.720, 0.243] [0.700, 0.757, 0.727]
CL: Pairwise 0.537 0.361 [0.219, 0.718, 0.255] [0.702, 0.759, 0.726]

Bootstrap 1σ (<) ±0.011 ±0.006 ±[0.015, 0.014, 0.012] ±[0.021, 0.009, 0.015]

Data augmentations.— We focus on random augmentations to protein primary sequences, both
chemically and non-chemically motivated (see Fig. 1). Replacement (Dictionary/Alanine) [RD &
RA]: We randomly and independently replace each amino acid in the primary sequence according to
either a replacement dictionary or alanine (A) [Cunningham and Wells, 1989], with a probabiliy p.
For Replacement (Dictionary), following French and Robson [1983], we experimented with different
pairings, finding little difference in the results; our best results were obtained with the final mappings:
[[A,V], [S,T], [F,Y], [K,R], [C,M], [D,E], [N,Q], [V,I]]. Global/Local Random Shuffling [GRS &
LRS]: We reshuffle the protein sequence, either globally or locally. For S = {Ai}Ni=1, we define an
index range i ∈ [α, β] with α < β ≤ N , then replace amino acids Ai in this range with a permutation
chosen uniformly at random. We define Global Random Shuffling (GRS) with α = 1 and β = N
and Local Random Shuffling (LRS) with α ∈ [1, N − 2] and β = min(N,α + 50), ensuring at
least two amino acids get shuffled. Sequence Reversion & Subsampling [SR & SS]: For Sequence
Reversion, we simply reverse the sequence: given S = {Ai}Ni=1 we map i → i′ = N − i. For
Subsampling, we keep Ai for i ∈ [α, β] of the original sequence S = {Ai}Ni=1, with α ∈ [1, N − 2]
and β = min(N,α+ 50).

3 Results

Assessing data-augmented representations with linear evaluation.— In Table 1, we see broad
improvement when using contrastive learning with data augmentations compared to both baselines
for the stability, fluorescence, and remote homology tasks. (see “MT: TAPE Baseline" / “MT: Best
Aug." v.s. highest/red numbers in “CL: *" rows). We also see that masked-token prediction has
better performance than contrastive learning for all tasks with no data augmentations (“MT: No Aug."
v.s. “CL: No Aug."). Overall, we observe that the best results from Table 1 utilize the combination
of contrastive learning with pairs of data augmentation for all tasks besides secondary structure
prediction. Our interpretation is that augmentation and contrastive learning provide better encoded
features that help improving the performance on protein’s downstream tasks.

Figure 3 demonstrates our linear evaluation results using contrastive learning based on the composition
of pairs of data augmentations. For stability, amino acid replacement (with RD/RA) consistently
improves performance compared to the TAPE baseline, as well as to other augmentation strategies.
Fluorescence sees improvements using all data augmentations but random shuffling (LRS & GRS).
RA & RD result in the best individual performance. For remote homology, it is apparent that
subsampling plays an important role in model performance given the improvement it introduces on
the three testing sets; the “family” homology level is included. The other remote homology tasks are
qualitatively similar. Additionally, we see that subsampling tends to yield better performance than
alternatives, with the best performing approach using subsampling alone.
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Figure 3: Contrastive learning performance with pairwise & single augmentations in linear evaluation
for 4 different tasks. The axes refer to different augmentations, with diagonal being a single
augmentation. The values in the heatmaps are correlation (stability and fluorescence) and classification
accuracy (remote homology and secondary structure). Missing cells are due to redundancy. TAPE
Baseline is colored white in each subfigures; red is better performance, blue is worse.

Table 2: Model fine-tuning results, with associated training method and data augmentation procedure
for each task.

Scenario Stability Fluor. Remote Homology 2nd Structure

TAPE Best 0.730 0.680 [0.210, 0.880, 0.340] [0.710, 0.770, 0.730]

Our Best
[0.209±0.015, [0.711±0.015,

0.748±0.005 0.677±0.004 0.921±0.008, 0.778±0.008,
0.377±0.014] 0.739±0.003]

Best Models CL CL CL MT
Best Aug. RD(0.01 or 0.5) RD(0.01) & LRS RA(0.01) & SS RA(0.01) & SS

Exploring the best performance via full fine-tuning.— We provide results of the best performing
fine-tuned models with the best performing augmentations during linear evaluation (on downstream
tasks) and the comparison to the TAPE’s original baselines (Table 2), to verify whether the learned
representations of the best models provide good initialization points for transfer learning. The
fine-tuned, data-augmented models outperform the TAPE baseline on stability, remote homology and
secondary structure, which is consistent with results we found during linear evaluation. These models
also perform within 1σ on fluorescence, although the large difference in performance between full
fine-tuning and linear evaluation indicates that most of the model’s predictive capacity is coming
from the supervised learning task itself.

4 Conclusion

We experimentally verify that relatively naive string manipulations can be used as data augmentations
to improve the performance of self-supervised protein sequence when further optimized for down-
stream tasks. We demonstrate that, in general, augmentations will boost the model performance, in
both linear evaluation and model fine-tuning cases. However, different downstream tasks benefit from
different protein augmentations; no single augmentation that we studied was consistently the best.
The approach that we have taken, where we fine-tune a pretrained model on the validation set requires
significantly lower computational cost than training on the full training set, using data augmentations.
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