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Abstract

A central task in computational medicine is discovering novel effective treatments
in the form of drug combinations. This is necessary for complex medical conditions
and is difficult to screen empirically. So far, computational approaches have focused
on using either an chemical view of the drug (the chemical structure) or an protein
view of the drug (the proteins each drug is affecting). Conversely, we introduce
a multi-view framework which leverages information from the drugs’ functional
groups, while also matching the sets of proteins they target by using Graph Neural
Networks. We empirically prove the benefit of our proposed multi-view solution,
reaching state-of-the-art performance.

1 Introduction and Background

Growing amounts of data and better computational paradigms have allowed increasing use of
neural networks for computational medicine [37]. However, treating co-existing conditions and
complex diseases requires the analysis of drug combinations, a field still largely unexplored. Drug
combinations refer to simultaneous administration of multiple drugs, and computational approaches
can provide huge benefits – they can indicate novel treatments at a very low cost and short time frame.

Leveraging the drug chemical and the target protein graph at the same time would be equivalent to
providing two views for each drug considered – an chemical view, derived from its chemical structure,
and an protein view, based on the graph of proteins it targets.1 Markedly, joining the drug chemical
and the target protein graph in a multi-view framework is, to the best of our knowledge, a direction
yet unstudied. While there exist some recent works where one of the views is a graph [2, 26], the
full potential of the data is not explored – the graph is summarized to a flat representation before
exchanging information with the other view. This observation is even more relevant when leveraging
graphs of proteins – drugs not only affect the target proteins, but also the other proteins which are on
the same pathways; thus the graph of proteins a drug affects is often a dense graph. This leads to
our proposed framework, the Structured Multi-View Representation (SMVI). Next we will start with
some notations before further discussion.

Notations Given a drug combination task, the i-th drug has two views, i.e., xi = (xic, x
i
p), where

xc and xp correspond to the Chemical View and Protein View respectively. Each view has one
corresponding representation function (gc, gp) and one prediction function (fc, fp).

1.1 Single Views-Based Prediction

Chemical View In this view, the drug representation encodes the chemical feature from that drug.
The common way is to treat drug as a molecular graph, with atoms as nodes and bonds as edges.

∗Equal contribution
1It can include richer types of biological entities, like disease, assay, gene, etc. Here we only consider protein

for simplicity.
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(a) Chemical View (b) Protein View

Figure 1: Each drug can be represented by the chemical feature as Chemical View. While in Protein
View, each drug can be represented as a graph from the large PPI graph, as marked in the dashed line.

Recent works [31, 34, 28] explored different representation strategies, and here we may as well take
Extended Connectivity FingerPrints (ECFP) [31] which maps the molecular graph into a fix-length
bit vector.

Protein View Protein View focuses more on the relation between drug and its connected proteins,
and therefore it can reveal the pharmaceutical aspect for each drug, as a higher-level information. In
doing so, a biomedical knowledge graph is used for exploring the pharmaceutical relation. Here we
simplify it as a single knowledge graph: if two proteins can have an interaction, we add a link between
them and call it as protein-protein interaction (PPI). Thus, each drug induces its own graph of the PPI
network over the protein set it targets. We denote xp = (V,E) the induced graph of proteins, which
will further be used as an input to representation function gp, to obtain a latent representation of the
view, gp(xp) ∈ Rdp . More details are followed in Section 1.2.

Drug Pair Prediction Given Chemical View and Protein View (gc(xc), gp(xp)), we can perform
the single-view final prediction on the drug-pair (xi, xj). Following the common practice in matching
networks [9], we predict the pairwise combination on the concatenation of the two drug representa-
tions, i.e., [gc(xic)⊕ gc(xjc)] or [gp(xip)⊕ gp(xjp)], depending on the view we are using, where ⊕ is
the concatenation.

1.2 Node-Level and Graph-Level Representation of the Protein View

In Protein View, each drug induces a graph xp = (V,E), with V = {p1, p2, . . . p|V |}, the proteins
targeted by the drug and E = {(pi, pj)|pi, pj ∈ V ∧ pi ↔ pj}, edges between these proteins, where
pi ↔ pj represents an existing link in the PPI network. We denote by Ni the one-hop neighborhood
of protein pi in this subgraph. Each protein is represented by a learnable embedding vector p0i ∈ Rdp .
The graph structure then allows us to apply a GCN [24], which updates the protein representation as
follows:

pt+1
i = σ

(
W t

sp
t
i +

∑
(i,j)∈E

1√
|Ni||Nj |

W tptj

)
gp(xp) =

|V |∑
i=1

pTi (1)

where σ is an activation function and W and Ws are a learnable linear transformations
After T GCN layers, we summarise the protein representations through a graph-level readout function,
resulting in gp(xp), the representation for drug in Protein View.

1.3 Unstructured Multi-View Interaction

Classic multi-view representation methods first extract a flat representation from each view (gc and
gp in our framework), then try to align or fuse these multiple representations. Deep multi-view
representation includes aligning features through correlation [19, 3, 41] or fusing the representation
learned by neural networks [32, 22, 12]. Recent progress is contrastively learning the multi-view
representation [5, 40] in a self-supervised manner. To put them into our setting, these methods are
indeed jointly learning the representation between gc(xc) and gp(xp), while they are unaware of the
drug-protein graph. Thus we categorize them as unstructured multi-view interaction methods.
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2 Structured Multi-View Interaction

As pointed out in Section 1.2, Protein View is a graph of drug and proteins. To be more specific,
existing multi-view learning methods are focusing on interactions between gc(xc) and gp(xp), and
ignore that gp(xp) can be factorized into proteins the drug targets, i.e., pTi . Conversely, we are
interested in utilizing such graph structure to allow gc(xc) and pTi to interact. Motivated by this, we
design three structured approaches for modeling their interactions, described in Sections 2.1 to 2.3.
The high-level pipelines are given in Figure 2.
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Figure 2: Pipelines for UMVI and three SMVI pipelines. The blue, red, and yellow rectangles are
drug representations from Chemical View (gc(xc)), Protein View (gp(xp)) and protein representations
from Protein View (pi) respectively.

∑
, � and ⊕ are summation, element-wise dot product, and

concatenation. Solid line corresponds to an edge, while dashed line means it is a directed operation.
In Figure 2a, we illustrate UMVI between xc and xp, with feature alignment or fusion. In Figures 2b
to 2d, we visualise the three proposed structured interaction methods CPA, MPMP and DPMP.

2.1 Context-Protein Attention (CPA)

One way to do structured multi-view learning is by providing the Chemical View as a context for the
Protein View representation learning. We call this Context-Protein Attention (CPA).

Recall that gp(xp) =
∑|V |

i=1 p
T
i . We provide Chemical View context through attention [6], providing

the Chemical View gc(xc) as the query, and the protein embeddings pTi from Protein View as the keys.
We learn coefficient vectors αi for each drug-protein pair, αi = s(xc, pi), where s is the attention
mechanism, for which we tested (1) element-wise product: s(xc, pi) = gc(xc)� pTi and (2) linear
transformation on concatenation: s(xc, pi) =W [gc(xc)⊕pi], where� is an element-wise product of
two vectors and ⊕ is vector concatenation. With this learned weight vector, the final sub-component
and Protein View representation are given in Equation (2).

g̃p(pi) = αi � pTi g̃(xp) =

|V |∑
i=1

g̃p(pi) (2)

2.2 Master-Protein Message Passing (MPMP)

In Master-Protein Message Passing (MPMP), the Chemical View is added as a master node to the
Protein View graph, which is directly connected with all proteins. Combining the information from
the protein-protein (PPI) network and the drug-protein interaction (DPI) network, we create a master-
protein graph xmp = (Vmp, Emp), where Vmp = V ∪ {xc} and Emp = E ∪ {(xc, pi)|pi ∈ V }. The
update rule is:

vt+1
i = σ

(
W t

sv
t
i +

∑
(i,j)∈Emp

1√
|Ni||Nj |

W tvtj

)
(3)

where vi+1
i is the representation after applying layer t+ 1 of node v (which is either pti or xc). The

initial features of xc within Vmp are given by gc(xc). This enables direct propagation of information
from the chemical to the individual proteins through the GNN update and, also allows the master
node to summarise the protein information and adapt at the same time.

2.3 Drug Protein Message Passing (DPMP)

We explicitly incorporate heterogeneity in the Drug Protein Message Passing (DPMP) model. DPMP
learns two different sets of parameters in order to distinctly model protein-protein and drug-protein
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interactions. We use two graphs to model the two types of interactions – drug-protein (DP graph) and
protein-protein (the previously introduced xp graph). We denote GDP = (VDP , EDP ), the graph
modelling the drug-protein interactions, with VDP = V ∪ {xc} and EDP = {(xc, pi)|pi ∈ VDP },
while the graph xp, described in Section 1.2, models the protein-protein interactions. This yields two
protein representations: 1) p̃i from its interaction with the chemical, as described in Equation (4); 2)
pi from interaction with proteins in xp, described in Equation (1). The update rule in the DP graph is:

p̃t+1
i = σ

(
dpW t

s p̃
t
i +

1√
|V |

dpW tx̃tc

)
x̃t+1
c = σ

(
dpW t

s x̃
t
c +

∑
i∈V

1√
|V |

dpW tp̃ti

)
(4)

where the mixing coefficient is determined by the fact that the protein neighborhood size is 1
(|Ni| = 1) and the drug neighborhood size is the number of proteins (|Nj | = |V |). Similarly to
MPMP, the initial drug chemical embedding x̃0c is obtained from gc(xc).

For the PP graph, similarly as before:
pt+1
i = σ

(
ppW t

sp
t
i +

∑
(i,j)∈E

1√
|Ni||Nj |

ppW tptj

)
(5)

Critically, the pp weights are distinct from the dp weights. Note that the MPMP model can be seen as
a special case of the DPMP model, when we force dpW t

s = ppW t
s and dpW t = ppW t for all t.

One layer is then defined by performing one GCN propagation in the drug-protein graph and one
GCN propagation in the protein-protein graph in parallel. This is then followed by the fusion of p̃i
and pi through a linear layer: p̂t+1

i =W [p̃t+1
i ⊕ pt+1

i ], where ⊕ is the concatenation on vectors. At
the end of the GCN layer, we reassign the protein representation as: p̃t+1

i = pt+1
i = p̂t+1

i .

3 Experiments

We only list the brief descriptions of baselines here. More details can be found in appendix. For
Chemical View, we apply Extended Connectivity FingerPrints (ECFP). For Protein View, we use
Graph Convolutional Network (GCN) [24] on the PPI knowledge graph. For UMVI, we include
Simple Mean, Deep CCA [3], Deep Fusion [27], and InfoNCE [40]. For SMVI, our proposed
methods include Context-Protein Attention (CPA), Master-Protein Message Passing (MPMP), Drug
Protein Message Passing (DPMP).
Table 1: 5-fold cross-validation results on NCI-SS and NCI-GP. The best results are marked in bold.

View Model NCI-SS NCI-GP
RMSE MAE RMSE MAE

Chemical View ECFP 27.11 ± 1.58 15.22 ± 0.88 28.00 ± 3.93 17.24 ± 1.86

Protein View Local PPI 25.95 ± 1.04 15.41 ± 0.43 27.37 ± 3.64 16.65 ± 1.74

Chemical View &
Protein View

UMVI

Simple Mean 26.19 ± 1.74 15.30 ± 0.71 27.12 ± 3.17 16.99 ± 1.33
Deep CCA 31.03 ± 1.22 22.32 ± 0.73 31.47 ± 3.22 22.23 ± 2.59
Deep Fusion 26.55 ± 2.22 15.33 ± 0.81 26.50 ± 3.12 17.00 ± 1.19
InfoNCE 26.61 ± 1.61 15.69 ± 0.68 27.97 ± 3.33 16.88 ± 1.30

SMVI
CPA 24.42 ± 1.13 13.70 ± 0.33 25.94 ± 4.51 15.34 ± 1.56
MPMP 25.06 ± 2.33 14.89 ± 0.64 27.11 ± 2.99 16.66 ± 0.77
DPMP 24.79 ± 1.87 15.26 ± 0.81 26.39 ± 3.93 16.60 ± 1.33

We can observe that generally, all three SMVI methods can perform better than the baselines.
Specifically, CPA is reaching consistently state-of-the-art performance on both datasets. Due to its
indirect nature, CPAis the model requiring the smallest number of learnable parameters out of the
three, making it a better candidate for small datasets.

4 Conclusions

To sum up, we propose Structured Multi-View Interaction (SMVI), a novel and general framework
for learning multi-view representations from a Chemical View and Protein View. We introduce
three approaches for leveraging the interaction between the two views and all demonstrate better
performance. Moreover, the three structured approaches outperform UMVI baselines which combine
or contrast the two views after having a flat representation.
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A Overview of Direct and Indirect Drug-Protein Interaction

Intuitively, there is a distinct difference between the CPA model and the remainder: the final obtained
Protein View representation, gp(xp), does not directly incorporate any content from the Chemical
View, gc(xc). Instead, CPA uses gc(xc) as a mechanism for indirectly specifying the way in which
contributions from various elements within gp(xp) are scaled—hence making the final representation
a weighted sum of pure protein representations, pTi . The only way in which the protein embeddings
have an effect on (subsequent) chemical embedding computations is through backpropagating through
the attention weights, αi.

In comparison, the MPMP and DPMP methods directly include gc(xc) as a component of the
message passing system, causing the protein representations pti to directly exchange content with
corresponding Chemical View representations, gc(xc)t (which are themselves updated within this
process). This allows the chemical information to directly influence the final Protein View vector.

Finally, we use the above analysis to propose another categorisation of multi-view interaction: indirect
(influenced but not content-wise; only through backprop, such as CPA) and direct (exchanging content
directly during forward propagation, such as MPMP and DPMP).

B Related Work

B.1 Drug Combination

Drug combination methods can be divided into two categories: chemical feature as Chemical View
and network-based method as Protein View.

Chemical-Based Method An alternative method to DDI prediction is to directly study the similarity
of the drugs. The work from Asada et al. [4] represents each drug separately using a textual and a GNN
embedding and then predicts the side-effect after concatenating them. The multi-head co-attentive
drug-drug interaction (MHCADDI) [11] model explicitly accounts for the interactions between
molecular substructures of the two drugs at different scales, through an interleaved sequence of GNN
layers within each drug’s molecular graph and co-attentive layers that allow atom representations to
be exchanged between the two drugs.

Network-Based Method Representing drugs as nodes in a graph allows identification of large
overlap between two drugs’ sets of neighbors, indicating positive or adverse drug-drug interactions
(DDI). Therefore, it has been common to pose the task as a link prediction problem and use methods
such as matrix factorization [35]. More recently, GNNs have been applied: AttSemiGAE [29]
leverages multi-view graph auto-encoders, where each view corresponds to a different type of drug
features, and a attentive mechanism to predict the weights corresponding to each view. Instead of
multiple views, Decagon [45] uses a multi-modal graph by adding proteins as nodes in the graph.

B.2 Multi-View Learning

Li et al. [27] concludes that the classic multi-view representation learning can be classified as feature
alignment and feature fusion. For the first one, distance-based alignment [25] and similarity-based
alignment [13, 22] target at minimizing the distance and maximizing the similarity among views
from some measurable space. While correlation-based method like Canonical Correlation Analysis
(CCA) [19] attempts to maximize the correlation between multiple views of representation. Deep
CCA [3, 41] extends CCA from linear projection to non-linear mapping. For feature fusion, graphical
model-based method [7, 21, 44, 36] tries to learn a distribution based on the observed multi-view data.
Another direction is to use neural network [32, 22, 12], which first learns the representation from
each view then aggregated for the final prediction. And specific to the drug discovery, some existing
works [14, 20] can belong to the fusion methods, and put more emphasis on feature extraction from
various sources.

Recently, contrastive learning [33, 17] has become prevalent in self-supervised learning. It encourages
the representations getting close for the same data point while more distant to different data points in
a contrastive way. Borrowing this idea to multi-view setting, [5, 40] apply the contrastive learning to
learn representations among multiple views and reach promising results.
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Another thing to mention is that the mainstream methods for multi-view learning include co-
training [8] and knowledge distillation [16]. They can handle the multi-view (decision) learning, but
they transfer knowledge among different views in the output level (or the decision layer). Thus they
are beyond the scope of this paper.

Multi-View Learning on Graph Only a few works have been focusing on this direction. [2] takes
the knowledge graph and literature description as two views and jointly learn the node representation
under the word2vec [30] framework. [26] explores both the knowledge graph and entity-level
graph, and proposes using the KL-divergence as the disagreement measure to improve the model
performance. We will introduce a framework that can better utilize the property of the graph.

C Dataset Specification

The National Cancer Institute (NCI)-ALMANAC [18] provides Food and Drug Administration
(FDA)-approved drug pairs on killing the cancer cells. It also includes the effect on various cell lines
and panels, and here we are focusing on only one of them, the CCRF-CEM (cell lines) and Leukemia
(panel). Besides, in NCI-ALMANAC, each drug pair and cell line corresponds to multiple records
with different drug concentration combinations. Following [43], we are taking only the best growth
inhibition for different concentration combinations, i.e., the lowest growth fraction for each drug pair
and cell line.

To align the NCI data with STITCH [39], STRING [38], and Cheng et al [10], the key is to map
using the drug. NCI is using Cancer Chemotherapy National Service Center number (NCS ID) as
drug identifier, and mapping it to the PubChem ID [23] takes the following steps:

1. We get all the valid drugs NSC ID from file ’ComboDrugGrowth_Nov2017.csv’, removing
NaN scores.

2. Then we map NSC ID to PubChem SID using ’NSC_PubChemSID.csv’, then convert to
PubChem CID using the PubChem Exchange website [1]. Only one PubChem SID (01178),
cannot find PubChem CID. Note that we have some drugs with one PubChem SID mapping
to multiple PubChem CIDs.

3. Each drug can have up to two drug names, one from file ’ComboCompoundNames_small.txt’
and one by using NSC ID as drug name.2 Then we map the drug names to PubChem CID
using pubchempy.

4. Finally we merge all the drugs following NSC ID -> PubChem SID -> PubChem CID.
(a) If we have only one mapping from PubChem SID -> PubChem CID, use this; otherwise:
(b) If we have multiple mappings from PubChem SID -> PubChem CID, choose the most

frequent CID in Drug Name -> CID; otherwise:
(c) Prioritize the drug name mapping to PubChem CID using NSC ID to PubChem CID.

So now we have the mapping from NSC ID to PubChem CID for NCI-SS. Then we also use the
PubChem Exchange website to map from PubChem CID to DrugBank ID [42] for NCI-GP.

C.1 Statistics

Table 2: Dataset specification on merged NCI-ALMANAC with two sources of DPI and PPI.
Dataset # Drug # Drug-Drug # Drug-Protein # Protein # Protein-Protein

NCI-SS 67 2,160 33,042 19,354 11,759,454
NCI-GP 46 979 735 2,132 217,160

We consider the drug combination effect on the cancer cell from National Cancer Institute (NCI) [18].
NCI-ALMANAC measure the best growth inhibition of each FDA-approved drug pair on killing the
cancer cells, which can be viewed as a regression task. We merge the NCI-ALMANAC data with two
sources of drug-proteins and protein-protein interaction network. Table 2 shows the key statistics of
the two datasets. The complete pipeline of merging the two sources can be found in Appendix C.

2The drug name is ’NSCxxxxx’, where xxxxx is the NSC ID.
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NCI-SS STITCH [39] is a drug-protein interaction network dataset, and STRING [38] consists of
protein-protein interactions. We align NCI-ALMANAC to STITCH-STRING on PubChem ID [23].

NCI-GP Cheng et al [10] studies the drug combination on different diseases and concludes that
graph-based proximity can better measure the drug combination effect. It provides a cleaned-
up version of protein-protein and drug-protein interaction network. We map this dataset to NCI-
ALMANAC data on DrugBank ID [42].

C.2 Distribution of the dataset

Figure 3: Distribution for NCI-SS.

Figure 4: Distribution for NCI-GP.

D Baselines

The Extended Connectivity FingerPrints (ECFP) [31] is a classic method to encode the chemical
information. It follows the graph topology of the molecule and maps the substructure onto a bit vector
with a hash function.

Protein View Methods We applied Graph Convolutional Network (GCN) [24] on the knowl-
edge graph, where each node is the protein and edge is the interaction between proteins.
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UMVI Simple Mean is taking the average of the two models. Deep CCA [3] attempts to max-
imize the correlation among different views. Deep Fusion [27] first integrates the representation
from different views, and then passes through the fully-connected layers for the final prediction.
InfoNCE [40] is contrasting the representation of different views in a self-supervised manenr.

E Contrastive Representation Learning

Contrastive learning aims at distinguishing different data points in the feature space by maximizing
the mutual information between them. Noise Contrastive Estimation (InfoNCE) [15, 33] is one of the
most commonly used contrastive losses over two views xc, xp. Here we provide the definition of
InfoNCE across the defined two views:

LInfoNCE(Xc, Xp) = − logE
[ exp[s(xic, x

i
p)/τ)]∑N

j=1 exp[s(x
i
c, x

j
p)/τ ]

]
(6)

where s is the cosine similarity between the representations of the two views, i.e. s(xic, x
j
p) =

〈g(xi
c),g(x

j
p)〉

‖g(xi
c)‖·‖g(x

j
p)‖

, and τ is a temperature hyper-parameter.

Equation (6) presents a loss for contrasting Xc against Xp, which is asymmetric. As in [40],
we can recover a symmetric loss by also contrasting Xp against Xc, which is LInfoNCE(X) =
LInfoNCE(Xc, Xp) + LInfoNCE(Xp, Xc).

F Implementation Details

Since this is a regression task, we use root mean squared error (RMSE) and mean absolute error
(MAE) for evaluation. For hyper-parameter tuning, we follow the rigorous pipeline for hyper-
parameter tuning: we select the optimal hyper-parameter on a subset (80%) of the dataset. One
thing to highlight is whether or not adding InfoNCE is one hyper-parameter for CPA, MPMPand
DPMP. More details on hyperparameters can be found in Appendices E and G. Then with the optimal
hyper-parameters, we train and test models on 80% and 20% data respectively, repeating this five
times for the cross-validation.

G Hyper-parameter Tuning

We are using 4 folds for the hyper-parameter tuning. Here we list the most important ones.

• GCN: we experiment on different GCN layer dimension, including {[1024, 128], [1024,
64], [128, 32], [128], [64]}.

• ECFP: the bit vector length and radius are usually set to 1024 and 2 respectively, and we
tune the representation network for ECFP with NN structure including {[1024, 128], [1024
64]}.

• Matching network: this is after the concatenation of the drug pair, and we test {[128, 64],
[128], [64]}.

• Contrastive loss: we tune the temperature τ in {0.01, 0.1, 1, 10, 100}.
• Optimization: we use Adam for optimizer, and check learning rate from {0.003, 0.001},

epochs from {100, 1000}.
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