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Abstract

When predicting molecular properties, previous Graph Neural Networks (GNNs)
improve their expressive power by incorporating auxiliary information in molecules
while inevitably increase their computational complexity. Motivated by this we de-
sign a powerful and efficient GNN for molecules. Inspired by molecular mechanics,
our approach first represents each molecule as a multiplex graph. Then a mes-
sage passing module is proposed to balance the trade-off of expression power and
computational complexity. The performance of the resulting Multiplex Molecular
Graph Neural Network (MXMNet) is successfully validated on the QM9 dataset.

1 Introduction

Recently, Graph Neural Networks (GNNs) have shown superior performance on predicting molecular
properties by treating the molecules as graphs and performing the message passing scheme [1]. To
increase the expressive power, previous GNNs have adopted auxiliary information such as chemical
properties, pairwise distances between atoms, and angular information [2, 3, 4, 5, 6, 7, 8]. However,
adopting such information in GNNs will inevitably increase the computational complexity. For
example, when passing messages on a molecular graph that has N nodes with an average of k nearest
neighbors for each node, O(Nk2) messages are required for the previous state-of-the-art GNNs [7, 8]
to capture the angular information. With restricted memory resources, those GNNs could exhibit
limited expressive power or even fail when applied to macromolecules like proteins or RNAs.

To address such limitation, we aim to propose a powerful and efficient GNN for molecules. Inspired
by molecular mechanics [9], we will use the angular information to model only the local connections
to avoid using expensive computations on all connections. To do so, we represent a molecule as
a two-layer multiplex graph G as shown in Figure 1. In G, one layer Gl only contains the local
connections that capture covalent interactions, and another layer Gg contains the global connections
that cover the non-covalent interactions. Then a novel angle-aware message passing with O(Nk2)
messages is operated on Gl. For Gg , we propose an efficient message passing with O(Nk) messages.
With the message passing schemes, we integrate them into a Multiplex Molecular (MXM) module and
then construct Multiplex Molecular Graph Neural Network (MXMNet). To evaluate the performance
of MXMNet, we conduct experiments on the QM9 dataset [10]. Our model can outperform the
state-of-the-art models and require significantly less memory than DimeNet as shown in Figure 2.

2 Preliminaries

Let G = (V,E) be a graph with N = |V | nodes and M = |E| edges. The nearest neighbors of node
i are defined as N (i) = {j|d(i, j) = 1}, where d(i, j) is the shortest distance between node i and
j. The average number of the nearest neighbors of each node is k = 2M/N . Next we provide the
definition of a multiplex graph:
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Figure 1: Example of representing a
molecule as a multiplex molecular
graph.

Figure 2: Mean std. MAE vs. memory consumption on QM9
dataset [10]. When compared with SchNet [5], PhysNet [6]
and DimeNet [7], our MXMNet can get stat-of-the-art per-
formance and is memory-efficient.

Definition 1. Multiplex Graph. A multiplex graph G = {G1, G2, ..., GL} is a set of graphs, where
Gl = (V,El), l ∈ {1, 2, ..., L} is a layer. V is the node set and El is the edge set in the l-th layer.

In our later formulations, we will use eji as the edge feature between node i and j, which embeds
the pairwise distance, MLP as the multi-layer perceptron, ‖ as the concatenation operation, � as the
element wise production and W as the weight matrix.

3 Approach

In this section, we introduce our approach including the multiplex molecular graphs, the Multiplex
Molecular (MXM) module, and the Multiplex Molecular Graph Neural Network (MXMNet).

3.1 Multiplex Molecular Graphs

In molecular mechanics methods [9], the molecular energy E is modeled as E = Elocal + Enonlocal,
where Elocal = Ebond +Eangle +Edihedral models the local, covalent contributions including Ebond that
depends on bond lengths, Eangle on bond angles, and Edihedral on the dihedral angles. Enonlocal models
the non-local, non-covalent contributions between atom pairs. In such computations, only the Eangle
and Edihedral in the Elocal term needs the angular information. As a contrast, DimeNet uses the angular
information in the modeling of both local and non-local interactions and is inefficient. Inspired by
molecular mechanics, the angular information will be used to model only the local interactions in
our proposed model to reduce the computational complexity. To achieve our goal, we propose to
represent the molecule as a multiplex graph G = {Gl, Gg}, which consists of a local layer Gl and a
global layer Gg . The atoms are the nodes in both layers. In Gl, we can create edges by using either
chemical bonds or finding the neighbors of each node within a small cutoff distance. In Gg , we create
the edges by defining the neighbors of each node within a relatively large cutoff distance.

3.2 Multiplex Molecular (MXM) Module

With the multiplex molecular graph, we propose a Multiplex Molecular (MXM) module as shown
in Figure 3(a) that performs massage passing on it to model the interactions in molecules. For Gg,
we propose the global layer message passing. For Gl, we propose the local layer message passing.
To transfer the information between different layers, we use a cross layer mapping.

Global Layer Message Passing Module By taking advantage of addressing high-order neighbors
in GNNs [11, 12, 13], we here propose a message passing that captures both one-hop and two-hop
neighbors per iteration. As illustrated in Figure 3(b), our global layer message passing module
consists of two same message passing operations and an update function fu using multiple residual
modules (Figure 3(d)) between them. Each message passing operation is formulated as follows:

mji = MLP([hinput
j ‖hinput

i ‖ eji])� (ejiW ), houtput
i = hinput

i +
∑

j∈N (i)
mji,

where i, j ∈ Gglobal, the superscripts denote the state of h in the operation. By performing the
message passing operation twice in the module, each central node i will receive the messages from
up to its two-hop neighbors. The resulting operation only needs O(2Nk) messages.
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Figure 3: Overview of the architecture of the MXM module and the MXMNet. In the illustrations, σ
denotes the non-linear transformation, � denotes the input for the layer.

𝑗𝑗3

𝑗𝑗2

𝑘𝑘1

𝑘𝑘2

𝒎𝒎𝑗𝑗1𝑖𝑖 𝑗𝑗1

𝒂𝒂𝑗𝑗3𝑖𝑖,𝑗𝑗1𝑖𝑖

𝒂𝒂𝑗𝑗2𝑖𝑖,𝑗𝑗1𝑖𝑖
𝒎𝒎𝑗𝑗2𝑖𝑖

𝒎𝒎𝑗𝑗3𝑖𝑖

𝒂𝒂𝑘𝑘1𝑗𝑗1,𝑗𝑗1𝑖𝑖
𝒎𝒎𝑘𝑘1𝑗𝑗1
𝒎𝒎𝑘𝑘2𝑗𝑗1

𝒂𝒂𝑘𝑘2𝑗𝑗1,𝑗𝑗1𝑖𝑖

𝑗𝑗3

𝑗𝑗2

𝑘𝑘1

𝑘𝑘2

𝒎𝒎𝑗𝑗1𝑖𝑖 𝑗𝑗1

(a) (b)

Figure 4: Illustration of Message Passing 1 and 2 used in the Local Layer Message Passing module.
(a) Message Passing 1 can capture the angles like ∠ij1k1 and ∠ij1k2 when updating mj1i. (b)
Message Passing 2 can capture the angles like ∠j1ij3 and ∠j1ij2 when updating mj1i.

Local Layer Message Passing Module In this module that performs message passing on the local
layer, we propose a 3-step scheme: Step 1 contains Message Passing 1 that can capture the angles
between 1-hop and 2-hop neighbors to update {mji} (see Figure 4(a)). Step 2 contains Message
Passing 2 that can capture the angles between 1-hop neighbors to update {mji} (see Figure 4(b)).
Step 3 finally aggregates {mji} to update hi. The t-th iteration can be formulated as follows:

Step 1: mt−1
kj = MLPkj([h

t−1
k ‖ht−1

j ‖ ekj ])� (ekjW e1)�MLPa1(akj,ji), (1)

mt−1
ji = MLPji([h

t−1
j ‖ht−1

i ‖ eji]) +
∑

k∈N (j)\{i}
mt−1

kj , (2)

Step 2: m
′t−1
j′i = MLPj′i(m

t−1
j′i )� (ej′iW e2)�MLPa2(aj′i,ji), (3)

m
′t−1
ji = MLP

′

ji(m
t−1
ji ) +

∑
j′∈N (i)\{j}

m
′t−1
j′i , (4)

Step 3: ht
i = fu(

∑
j∈N (i)

m
′t−1
ji � (ejiW e3)), (5)

where i, j, k ∈ Glocal, akj,ji is the feature for angle αkj,ji = ∠hkhjhi. We define fu using the same
form as in the global layer message passing. These steps need O(2Nk2 +Nk) messages in total.

Cross Layer Mapping To address the relations between the same nodes across Gl and Gg, we
use the following functions as in Figure 3(a): hl = fcross(hg) or hg = f ′cross(hl), where g ∈
Gglobal, l ∈ Glocal. We use multi-layer perceptrons to model the functions.

Complexity Analysis We denote the cutoff distance when creating the edges as dg and dl in Gg

and Gl. The average number of the nearest neighbors per node is kg in Gg and is kl in Gl. For
3D molecules, we have kg ∝ dg

3 and kl ∝ dl
3. As dg > dl, we know that kg � kl. Our MXM

module requires O(2Nkg + 2Nkl
2 +Nkl) messages, which is much smaller than O(Nkg

2) when
performing DimeNet on Gg in the original work.

3.3 Multiplex Molecular Graph Neural Network (MXMNet)

With MXM module, we build Multiplex Molecular Graph Neural Network (MXMNet) for the
prediction of molecular properties as shown in Figure 3(g). In the Embedding module, the atomic
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Table 1: Comparison of MAEs of targets on QM9 for different models.

Target SchNet PhysNet MEGNet-f Cormorant MGCN DimeNet
MXMNet MXMNet MXMNet

BS=32 BS=128 BS=128
dg=5Å dg=5Å dg=10Å

µ (D) 0.021 0.0529 0.040 0.038 0.056 0.0286 0.0396 0.0382 0.0255
α(a30) 0.124 0.0615 0.083 0.085 0.030 0.0469 0.0447 0.0482 0.0465

εHOMO (meV) 47 32.9 38 34 42.1 27.8 24.7 23.0 22.8
εLUMO (meV) 39 24.7 31 38 57.4 19.7 19.7 19.5 18.9

∆ε (meV) 74 42.5 61 61 64.2 34.8 32.6 31.2 30.6〈
R2
〉

(a20) 0.158 0.765 0.265 0.961 0.11 0.331 0.512 0.506 0.088
ZPVE (meV) 1.616 1.39 1.40 2.027 1.12 1.29 1.15 1.16 1.19
U0 (meV) 12 8.15 9 22 12.9 8.02 5.90 6.10 6.59
U (meV) 12 8.34 10 21 14.4 7.89 5.94 6.09 6.64
H (meV) 12 8.42 10 21 16.2 8.11 6.09 6.21 6.67
G (meV) 13 9.40 10 20 14.6 8.98 7.17 7.30 7.81
cv( cal

molK ) 0.034 0.0280 0.030 0.026 0.038 0.0249 0.0224 0.0228 0.0233

std. MAE (% ) 1.78 1.37 1.57 1.61 1.89 1.05 1.06 1.02 0.93

numbers Z are represented with randomly initialized, trainable embeddings to be the input node
embeddings. In the RBF & SBF module, the Cartesian coordinates r of atoms are used to compute
the pairwise distances and angles. We use the basis functions proposed in [7] to construct the
representations of eRBF and aSBF . Then we stack MXM modules to perform message passings. In
each MXM module, we use an Output module to get the node-level output. The final prediction y is
computed by summing all outputs together among all nodes and all layers.

4 Experiments

We examine our model on the QM9 dataset [10], which is a benchmark for the prediction of physical
properties of molecules and consists of around 130k small organic molecules. We use the same way
to split the data as in [7] and use the mean absolute error (MAE) to evaluate our model. We use the
chemical bonds as the edges in the local layer, and a cutoff distance to create the edges in the global
layer. In our experiments, we use the following state-of-the-art models as baselines: SchNet [5],
PhysNet [6], MEGNet-full [14], Cormorant [15], MGCN [16] and DimeNet [7]. On QM9, we use
the results reported in the original works for the baselines.

Results On the QM9 dataset, we test the performance of MXMNet under different configurations
by changing the batch size BS and the cutoff distance dg used in the global layer. As reported in
Table 1, MXMNet variants get better results than the baselines on 9 targets. We also compute the
mean standardized MAE (std. MAE) as used in [7] to evaluate the overall performance of the models.
MXMNet (BS=128, dg = 10Å) has the lowest std. MAE among all models and decreases the mean
std. MAE by 13% compared to the previous best model DimeNet. By comparing the results of
the MXMNet variants using different dg, we find that different targets benefit from different dg.
Therefore, in practice, it is recommended to properly choose dg for predicting different properties.

Efficiency Evaluation To evaluate the efficiency of MXMNet, we compare the memory consump-
tion during the training on QM9 for SchNet, PhysNet, DimeNet and MXMNet. For the baselines, the
model configurations are the same as those in their original papers. As illustrated in Figure 2, all of
the three MXMNet variants use much smaller memory than DimeNet. Note that MXMNet can also
benefit from large batch training with BZ=128 to achieve a speedup of the training to 2.6× against
DimeNet that can only use BZ=32 on our GPU. For SchNet and PhysNet that consume less memory
than MXMNet, they perform worse than MXMNet with higher mean std. MAEs.

5 Conclusion

In this paper, we propose a powerful and efficient GNN, MXMNet, for predicting the molecular
properties. The novelty of MXMNet lies in its representation of molecules as a multiplex graph that
is rooted in molecular mechanics. Experiments on the QM9 dataset have successfully demonstrated
the power and efficiency of MXMNet compared with the state-of-the-art baselines.
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A Appendix

B Details of the Experiments

B.1 Dataset Sources

For the QM9 dataset, we use the source1 provided by [1]. Following the previous works [2, 3, 4, 5, 6],
we process the QM9 dataset by removing about 3k molecules that fail a geometric consistency check
or are difficult to converge [7]. For the properties U0, U , H , and G, only the atomization energies are
used by subtracting the atomic reference energies as in [8]. For the property ∆ε, we follow the same
way as the DFT calculation and predict it by calculating εLUMO − εHOMO.

B.2 Baseline Sources

For the baselines used in the experiment on efficiency evaluation, we find their codes provided by
the original papers are based on different frameworks: SchNet [3] is based on PyTorch [9], while
PhysNet [4] and DimeNet [8] are based on Tensorflow [10]. To make fair comparisons and exclude
the differences brought by different frameworks, we adopt the implementations of SchNet2 and
DimeNet3 provided by the widely used PyTorch Geometric library [11] for graph representation
learning. Since DimeNet is built based on PhysNet, by comparing their original implementations, we
create the implementation of PhysNet based on4 by changing the corresponding modules. Besides,
the code of our MXMNet is also built based on4.

B.3 Implementation Details

For the multi-layer perceptrons (MLPs) used in our MXMNet, they all have 2 layers to take advantage
of the approximation capability of MLP [12]. For all activation functions, we use the self-gated Swish
activation function [13]. For the basis functions eRBF and aSBF , we use NSHBF = 7, NSRBF = 6
and NRBF = 16. To initialize all learnable parameters, we use the default settings used in PyTorch
without assigning specific initializations except the initialization for the input node embeddings h(0)

g

in the global layer: h(0)
g are initialized with random values uniformly distributed between −

√
3 and√

3.

In our experiment on QM9, we use the single-target training following [8] by using a separate model
for each target instead of training a single shared model for all targets. The models are optimized
by minimizing the mean absolute error (MAE) loss using the Adam optimizer [14]. We use a linear
learning rate warm-up over 1 epoch and an exponential decay with ratio 0.1 every 600 epochs. The
model parameter values for validation and test are kept using an exponential moving average with a
decay rate of 0.999. To prevent overfitting, we use early stopping on the validation loss. Besides, we
repeat our runs 3 times for each MXMNet variant following [15]. All of the experiments are done on
a NVIDIA Tesla V100 GPU (32 GB).

In Table 1, we list the most important hyperparameters used in our experiments.

Table 1: List of hyperparameters used in our experiments on QM9.

Hyperparameters Value / Range

Batch Size 32, 128
Hidden Dim. 12
Initial Learning Rate 1e-3, 1e-4
Number of Layers 6
Max. Number of Epochs 900
Dropout 0

1https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/
978904

2https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_schnet.py
3https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_dimenet.py
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C Ablation Study on QM9

To test whether our proposed two message passing modules will both contribute to the success of
MXMNet, we conduct experiments by only using either of the two modules or even partial of a
module. Table 2 shows that all those ablations will decrease the performance of MXMNet. These
validate that both of the two message passing modules contribute to the power of MXMNet. Besides,
when only using the global layer message passing module, the ablation with only one message
passing operation performs worse than the ablation with two message passing operations. It shows the
effectiveness of capturing the two-hop neighbors. When only using the local layer message passing
module, the mean std. MAE increases significantly compared to the original MXMNet, suggesting
that the local connections are not adequate for the task. The results also validate the power of our
approach that captures more angles in Step 2 in the local layer message passing: The ablations with
the Step 2 outperform the one without the Step 2, which contains the directional message passing that
captures fewer angles.

Table 2: Comparison of mean std. MAEs of ablations that only contain parts of the MXM module.
MXMNet cannot achieve the stat-of-the-art performance without any part of the MXM module.

Ablation std. MAE
std. MAE of MXMNet

Only Global Layer
Message Passing

One MP operation 116%
Two MP operations 110%

Only Local Layer
Message Passing

Step 1, 3 266%
Step 2, 3 244%

Step 1, 2, 3 224%
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