Supervised Topic Modeling for Predicting Chemical
Substructure from Mass Spectrometry

Gabriel K. Reder Jaan Altosaar
Bioengineering Department Department of Biomedical Informatics

Stanford University Columbia University
Stanford, California 94305 New York, New York 10027

gkreder@stanford.edu

Jakub Rajniak Noémie Elhadad
Bioengineering Department Department of Biomedical Informatics
Stanford University Columbia University
Stanford, California 94305 New York, New York 10027
Susan Holmes Michael Fischbach
Department of Statistics Bioengineering Department
Stanford University Stanford University
Stanford, California 94305 Stanford, California 94305
Abstract

Metabolites—organic molecules involved in or created by cellular metabolism—are
ubiquitous in biological systems and are a rich source of drug candidates and disease
biomarkers. Many metabolites are potentially important, but remain unidentified
and unknown [7]. Mass spectrometry (MS) is a common way of identifying new
metabolites en masse and is a promising option for clinical deployment. Given an
unknown molecule, reliably identifying its chemical structure from its MS spectrum
remains an open challenge. This is a difficult machine learning problem because the
number of molecule-annotated MS spectra is low, numbering at best in the tens of
thousands of human metabolites for a given instrument architecture and acquisition
setup [11]. We propose a supervised topic modeling approach to identify modular
groups of spectrum peaks and neutral losses in spectra corresponding to consistent
chemical substructures. We use labeled latent Dirichlet allocation (LLDA) [20]
to map spectrum features to known chemical structures. These structures appear
in new unknown spectra, and can thus be predicted. We compare LLDA to an
alternative developed in Liu et al. [14] that uses a lookup table mapping spectrum
features to substructures. In an empirical study, the two approaches yield similar
performance. We show that a benefit of LLDA is that it produces topics that are
chemically interpretable, allowing for further model refinement.

1 Introduction

Metabolites are the bioactive small molecules that are created and used by cellular chemical processes
[18]. They are ubiquitous, diverse, and central to biological systems; as such, they are important drug
targets, candidates, and biomarkers of disease [26]. For example, the fungus Penicillium produces the
metabolite Penicillin after metabolising amino acid dietary precursors. Many metabolites, however,
remain unidentified, even those commonly found in human samples [23]. Identifying the structure
of an unknown molecule or metabolite can be done via tandem mass spectrometry (MS/MS) or
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Figure 1: Supervised topic modeling for substructure prediction. (a) An example of a metabolite
with a potentially unknown molecular structure. (b) Liquid chromatography tandem mass spectrom-
etry (LC-MS/MS) can be used to analyze a metabolite via its spectrum. A metabolite’s spectrum
consists of mass-to-charge (m/z) peaks and neutral losses with associated intensities, resulting from
fragmentation of the metabolite. Labeled latent Dirichlet allocation (LLDA) is used as a topic model
of spectra. (c) Topics correspond to molecule substructures, and LLDA is used to predict substructures
using Equation (1).

nuclear magnetic resonance spectroscopy. This work focuses on molecular identification from
liquid chromatography tandem mass spectrometry (LC-MS/MS) since this technique requires low
concentrations of a molecule, is cheap, fast, and has immediate clinical applications [21]. LC-MS/MS
generates a spectrum for a molecule using the following process. First, a single molecule is fragmented
into substructures using electric fields and collisions with an inert gas. The mass-to-charge ratio (m/z)
of these fragments is measured, producing spectrum peaks. These fragments are themselves further
broken apart, and the resulting smaller structures are measured or broken apart iteratively. In other
words, a spectrum corresponds to one molecule, and each m/z peak in the spectrum corresponds some
part of that molecule. Each peak has an associated intensity: the observed count of the number of
fragments observed to have the peak’s mass-to-charge value. Some substructures are lost during the
fragmentation process and cannot be measured. These substructures are referred to as neutral losses,
and do not appear as m/z peaks. Instead, neutral losses can be inferred by computing differences
between m/z peaks (‘lost’ mass-to-charge) as shown in Figure 1.

Inferring chemical structure from a MS/MS spectrum is an open problem [4]. When done by hand, this
process is time-consuming, laborious, and potentially unreliable [2]. Current computational methods
to tackle this problem are described in Section 2. Here, we develop a supervised topic modeling
approach to address the problem of labeling chemical substructures to help identify the structure
of unknown metabolites. We use labeled latent Dirichlet allocation (LLDA) [20] to decompose
MS/MS spectra into constituent chemical topics. Given a set of metabolites whose structure is
known, alongside their MS/MS spectra, every spectrum can be labeled with a mixture of topics, or
the substructures in the metabolite. LLDA learns patterns in these labels. Further, LLDA can predict
the labels (substructures) of new spectra of molecules whose structure is unknown. We conduct an
empirical study to compare LLDA to the closest existing alternative developed by Liu et al. [14].
LLDA performs as well as this competitor, and yields chemically interpretable topics that can help
improve model fitting. As a probabilistic topic model, LLDA may help correct for label noise, arising
from redundancy and ambiguity in computing which substructures occur in a spectrum.

2 Related Work

Spectral Library Matching One approach to molecular identification from MS/MS spectra is to
search for a spectral match in libraries of publicly-available spectra. Such methods rely on computing
a similarity score between two spectra and ranking library spectra matches in relation to an input query
spectrum [2]. This approach is effective if the query spectrum corresponds to a previously-identified
metabolite with an available spectrum in the library. However, spectral libraries tend to be sparse. The
largest database of MS/MS spectra, Metlin, contains roughly 13,000 spectra from human metabolites
[17]. Additionally, this matching is often done on the entire spectrum and can miss partial structure



matches. Simulated fragmentation approaches in which a predicted spectrum is generated from an
input chemical structure offers a promising method of supplementing spectral libraries and has been
used to expand the search space in spectral library matching [1, 25]. A popular method for generating
these simulated spectra is Competitive Fragmentation Modeling-ID (CFM-ID) [5].

Fingerprint Prediction Another approach to molecular identification is to predict a molecular
fingerprint from a spectrum, rather than the entire molecular structure. A molecular fingerprint is
a vector representation of a molecule’s structure [22]. The values in these fingerprint vectors may
represent chemical substructures and properties as in Klekota and Roth [12] or may result from
a learned embedding of molecular structure [27]. Notable current methods include CSI:FingerID
[6], SIMPLE [16], and DeepEI [9]. A fingerprint-based approach requires mapping both molecular
structures and spectra to fingerprints. However, mapping a molecule to a fingerprint can add noise
[22].

Topic Modeling and Substructure Prediction Instead of identifying the structure of an entire
molecule, chemical substructures can be identified from a spectrum. Chemical substructures are
structural subunits that appear consistently across different molecules and are useful in identification
[12, 15]. In tandem mass spectrometry, substructures often fragment consistently, independent of
the rest of the molecule, and can therefore produce a recognizable set of mass-to-charge peaks in a
spectrum. Methods to identify chemical substructures in spectra include the metabolite substructure
auto-recommender (MESSAR) [14] and MS2LDA [8]. MS2LDA uses latent Dirichlet allocation [3] to
associate groups of m/z peaks and neutral losses with chemical substructures [8]. While a promising
approach, this method is unsupervised and requires manual labeling of the resulting topics produced
by the model. MESSAR is a supervised method that uses association rule mining rather than topic
modeling; we build on MS2LDA by using a supervised topic model.

3 Method

Supervised Topic Modeling We use labeled latent Dirichlet allocation (LLDA) [20] to model mass
spectra and predict chemical substructure. LLDA is a supervised variant of latent Dirichlet allocation
[3], which treats each document in a corpus as composed of words that come from a mixture of
topics. LLDA assumes that every document in a corpus has been tagged or labeled with a subset
of a known collection of topics; every word in a document is sampled from one of these topics’
distributions over words. The model is described in full in Ramage et al. [20]. Instead of modeling
documents, we model mass spectra corresponding to molecules. We note that every component of
LLDA for modeling a document has an analog useful for modeling a spectrum. A document is an
MS/MS spectrum. The words are both observed mass-to-charge peaks and neutral losses. Topics in
the model are co-occurring spectrum fragments and differences. A visualization of these components
is in Figure 1.

Preprocessing a Spectrum To convert a spectrum to a document, each peak is assigned the closest
m/z-matched molecular formula such that (1) the formula’s theoretical m/z is within 0.1 of the peak’s
m/z and (2) the formula is a subformula of the spectrum’s parent molecular formula. (Even for
unknown spectra, we assume that a molecular formula can be found since this problem has been
addressed to a larger degree than structural prediction [10].) Peaks with no such formula match are
discarded. Next, all possible neutral losses are computed as pairwise differences between peaks. A
neutral loss is kept only if it corresponds to a valid molecular formula (the difference between the
parent peak formula and the child peak formula) and the parent intensity of the neutral loss is greater
than the child intensity. Each neutral loss is assigned the mean of its two respective peak intensities.
Next, this set of peaks and neutral losses is converted to a document by setting each formula equal to
a word, prepending loss to formulas of neutral losses, and setting word counts to rounded integer
values of their associated intensities (spectrum-normalized to 100). Spectra are labeled with topics
using the Python RDKit library [13]. As every spectrum corresponds to a molecular structure, the
set of labels for a spectrum is a list of SMILES/SMARTS strings computed to be substructures of the
parent molecule.

Identifying Substructures in a New Spectrum Training LLDA on a corpus of spectra yields a
word distribution for every topic (substructure). To predict which substructures are likely to be
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Figure 2: LLDA performs similarly to competing methods, and provides interpretable topics.
(a) LLDA and MESSAR can both predict correct substructures. (b) An example spectrum from the test
set, with a correctly-labeled substructure highlighted (SMILES string C1C [NH] C (C) C1CCC). Spectrum
peaks corresponding to the most probable spectrum peak words for the topic are shown in red. (c)
The highest-probability topic peak and neutral loss words are also shown. LLDA allows inspection of
the model in terms of molecular formulas and probabilities in substructure topics.

present in a new, unlabeled spectrum, the cosine similarity between a new spectrum (document) d
and substructure (topic) k is calculated:

v;vk

sim(k,d) = —%——.
(k- 4) = ToallTex]

1
Here vy, is the word distribution for topic k£ and v, is the word count for every word in document d that
appears in the training corpus. Ranking all substructures according to this cosine similarity results in
a list of likely substructures in a new spectrum. We also tested a collapsed Gibbs sampler approach to
inferring the topic distribution of a held-out spectrum; this was outperformed by Equation (1).

4 Experiments

Data To compare LLDA to the association rule mining approach presented in MESSAR [14], the
same data from Liu et al. [14] is used. The training corpus is 3,146 positive mode LC-MS/MS spectra
from a spectral library [24]. The topic labels for LLDA are the substructures in file S1 of Liu et al. [14].
For testing purposes, we used the same labeled 185 CASMI spectra used by the MESSAR authors
(S2 data [14]). This dataset contains MASSBANK Q-TOF spectra for 34 drugs and 126 metabolites
combined with 25 spectra from the CASMI 2017 contest (http://casmi-contest.org/2017).

Implementation The Python Tomotopy library [19] is used to train LLDA on documents generated
as described in Section 3. Spectra are labeled with topics using the Python RDKit library [13]. LLDA
is trained for 2,000 iterations and Equation (1) is used to predict substructures.

Results On the test dataset of 185 spectra, Liu et al. [14] report the following results for MESSAR on
the top 3 recommended substructures for each spectrum: 79 cases in which at least 1 recommendation
is correct and 40 cases in which at least 2 recommendations are correct. LLDA yields 84 cases in
which at least 1 recommendation is correct and 25 cases in which at least 2 recommendations are
correct. These results and an example spectrum and topic are shown in Figure 2.
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5 Discussion

We developed a supervised topic model approach to identify molecular substructures in LC-MS/MS
data. We identify three benefits of our approach: (1) topics from LLDA topics are interpretable in terms
of molecular formulas, allowing for further model refinement and incorporation of prior knowledge
(2) scalability: we place no restrictions on the number of spectrum peaks and neutral losses that
may be associated with chemical substructures (unlike other approaches such as MESSAR, where
the number is capped) (3) LLDA is a probabilistic topic model, and can thus help compensate for
ambiguity, redundancy, or other noise from computing substructure labels. A number of limitations
remain in LC-MS/MS metabolite identification including limited availability of training data [11]
and difficulty of choosing a substructure set [22]. These are often difficult to disentangle from
data features that are purely based on chemical structure. Future work includes incorporating prior
knowledge such as ionization mode or instrument type, and testing LLDA on a larger dataset to study
how much prior knowledge corrects for a lack of data. We nevertheless believe that our approach
presents a promising way forward for de novo identification of unknown metabolites in LC-MS/MS
data.
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