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Abstract

Modeling complex interactions in multicomponent adsorption equilibria is pivotal
for the development of efficient chemical separation processes using nanoporous
materials. Starting from the ideal-mixture adsorption model in statistical thermody-
namics, we develop a machine learning formulation of multicomponent adsorption,
Adsorptive Transformer, based on the self-attention mechanism. The Adsorptive
Transformer accounts for the effects of guest-guest interactions on loading, and a
“shallow” model is already able to significantly outperform a deep neural network
on extrapolation in the state space. Our model is also readily interpretable to show
adsorption mechanisms, such as cooperative adsorption and sieving.

1 Introduction
Measuring, modeling, and understanding multicomponent chemical systems with diverse types of
interactions constitute one of the grand challenges in molecular and materials discovery, exemplified
by the design of efficient and environmental-friendly chemical separation processes [1]. Although
binary (2-component) and ternary (3-component) mixtures have been extensively studied [2, 3],
real-world chemical systems may involve a larger number of interacting components, giving rise to
difficulties in experimental measurements and predictive modeling. With an increased number of
components, sampling the state space for equilibrium properties of the system becomes exponentially
more difficult due to the well-known “curse of dimensionality”.

Adsorption equilibria in nanoporous materials, such as zeolites and metal-organic frameworks,
are of great interest for chemical separation [4]. The adsorption equilibrium q(n1, · · · , nk) =
f(x1, · · · , xk−1, p, T ) gives the relationship between the amount of k chemical components contained
in a porous material (n1, · · · , nk) and the thermodynamic state of the reservoir [5], generally mole
fraction xi, pressure p, and temperature T (for gas-phase adsorption, partial pressures pi = xip are
typically used). Through highly selective adsorption or diffusion, nanoporous materials can provide
more energy-efficient alternatives to conventional distillation-based separation [6, 7].

Herein, we study the adsorption equilibria for a series of 8-component systems of BTEX (benzene,
toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) species mixed with hydrogen and ethane
in an MFI-type zeolite structure. Separation of BTEX mixtures is among the most energy-consuming
tasks in the chemical industry [8, 9], while MFI-type zeolite materials have been demonstrated
as excellent candidates for efficient membrane separation of xylene isomers [10]. The molecular
structures of the BTEX–ethane–hydrogen mixture, the pore structure of the MFI zeolite, and a
snapshot of their adsorption are shown in Figure 1.

2 Related Work

Machine learning for nanoporous materials discovery Because of the vastness in the topological
and chemical spaces of sorbent materials and guest molecules, machine learning methods have been
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Figure 1: (A): Chemical constituents of the BTEX–ethane–hydrogen mixture. (B): The channel system of a
2× 2× 3 supercell of the MFI zeolite with the pore surface highlighted in cyan. (C): Simulation snapshots of
the mixture loading from two viewpoints.

widely employed for materials discovery [11, 12], and generative models have also been developed
to propose new material structures [13, 14].

Learning interactions and relations in physical systems Physics-informed neural networks have
been designed to model the interactions or relations between components in a system [15]. One of the
most notable examples is the Behler–Parrinello network that implicitly models atomic interactions
using symmetry functions [16]. By explicitly considering pairwise relations in a system, interactions
can be also learned from the model, such as in Relation Networks [17] and Interaction Networks [18].

Physical interpretations of neural networks Recently, there has been growing interest in inter-
preting neural network architectures as physical systems [19]. The hallmark in this area is the Neural
Ordinary Differential Equations that models an infinite-layer ResNet as an ODE system [20]. From a
similar perspective, transformers can also be formulated as particle systems where the dynamics is
governed by diffusion through inter-particle interactions and convection due to an external force [21].

3 Methods

Here we show that the multi-head self-attention mechanism, which is the core architecture of the
transformer model widely used in natural language processing [22], can also constitute a physics-
informed model for multicomponent adsorption equilibria. The simplest model for mixture adsorption
equilibria can be obtained from statistical thermodynamics assuming no interaction between adsorbed
molecules that can access the same set of adsorption sites [23]:

ni = N
ζi(T )e

βµi(pi,T )

1 +
∑
j ζj(T )e

βµj(pj ,T )

where ni is the (ensemble average) number of the ith type of molecule adsorbed, ζi is its molecular
partition function, µi is its chemical potential, N is the total number of adsorption sites, and
β = 1/kBT . It can be readily observed that by incorporating a fictitious “vacancy” component
with partition function ζ0 = 1 and chemical potential µ0 = 0, the adsorption model becomes the
celebrated softmax function,

ni = N
ewi(pi,T )∑
j e
wj(pj ,T )

where wi = log ζi(T ) + βµi(pi, T ) is a function of temperature and partial pressure of the ith
component. Due to the variety in molecular structures and pore size distributions, different compo-
nents usually exhibit different maximum adsorption capacities, and the strengths of the competitive
adsorption (denominator of softmax) may not be uniform among all pairs of molecules. This yields

ni = Ni
ewii(pi,T )∑
j e
wij(pi,pj ,T )

where ni is now the diagonal of the dimension-wise softmax result on a “weight matrix” W = {wij}.
However, the influence of other components on the adsorption loading of one component is still
limited to competitive adsorption by molecules displacing each other spatially instead of intermolec-
ular interactions. The interaction between adsorbed molecules is reflected in the phenomenon of
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cooperative adsorption [24], where the increase in one adsorbed component also leads to the increase
in another attractively interacting component. Therefore, additional terms are introduced whose nu-
merators contain the contributions from other components than the ith one, resulting in the inclusion
of off-diagonal terms in the softmax matrix,

ni =
∑
k

Nik
ewik(pi,pk,T )∑
j e
wij(pi,pj ,T )

When Nik > 0, the increase in partial pressure of kth component will lead to the increase in the
adsorption of ith component, thus modeling cooperative adsorption. The softmax weight wij can be
regarded as a metric describing how the partial thermodynamic states for two components “align”
with each other in producing interactions, hence it is naturally represented as a dot product [25]

wij(pi, pj , T ) = qi(pi, T )kj(pj , T )
′

where q and k are vector representations of the partial thermodynamic states of a component. The
prime symbol denotes transpose to avoid confusion with the temperature T . Finally, our physics-
informed model for multicomponent adsorption can be written in a matrix form as

n = softmax(QK′) ·N

It is noteworthy that the model is almost identical to the self-attention mechanism Z =
softmax(QK′)V (omitting the scaling factor for brevity) [22], with the only differences being
prepending an additional column of zeros in K and using a row-wise dot product over the maximum
adsorption matrix N instead of matrix multiplication. Same as the transformer, we use a direct
linear projection for Q and K from the thermodynamic state vector (pi, p, T ) of each component.
The physical interpretation of multi-head attention is also straightforward. Each attention head
represents a separate adsorption domain in the adsorbent material, and the total adsorption is the sum
of contributions from each domain. The existence of multiple adsorption domains in the structure of
a nanoporous material has also been observed in experimental studies [26].

4 Results and Discussion

Here, we report our preliminary results of the physics-informed model for adsorption equilibria,
named Adsorptive Transformer, on the adsorption of BTEX–ethane–hydrogen mixture in the MFI
zeolite using high-throughput Monte Carlo simulations performed for 27,648 different combinations
of mole fractions for each component, total pressure, and temperature (see Appendix for simulation
details). To illustrate the intrinsic advantage of Adsorptive Transformer in predicting the state space
surface of adsorption equilibria, the model was trained only on 6- or 7-component simulation data
without hydrogen, ethane, or both, (62.5%) and was tested on the simulations with all 8 components
(37.5%). Figure 2 shows the training and test results for the Adsorptive Transformer on the 8-
component BTEX dataset compared with a multi-layer perceptron (MLP) neural network as baseline.

Figure 2: Predicting multicomponent adsorption equilibria using the Adsorptive Transformer and an MLP as
baseline. The number of molecules for each component was normalized to the maximum number observed in
the dataset. The size of the scatter points in each color was scaled by the maximum number of molecules in the
corresponding type. R2 values were calculated as the coefficient of determination.

Although the MLP attained a similar performance as the Adsorptive Transformer in the 6- or 7-
component training set, it gave a completely erroneous prediction deviating from simulation results by
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orders of magnitude on the 8-component test set, because extensive extrapolation is required to predict
additional degrees of freedom in the state space. On the contrary, the Adsorptive Transformer gave a
prediction as accurate as the training set when extending to 8 components, even if there is no training
example where hydrogen and ethane coadsorb. By directly incorporating strong physical inductive
biases about adsorption equilibria with the self-attention mechanism, we have achieved significantly
improved generalization in the state space compared to a model without domain knowledge.
Since the attention query Q and key K are obtained from linear transformations and are independent
to the type of adsorbed molecule in a system, maximum adsorption matrices N consist of the
majority of parameters in the model. The learned weights of N are straightforwardly interpretable
by visualizing these weight matrices for the trained Adsorptive Transformer (see Figure 3); here
Nii represents the maximum attainable adsorption (saturation capacity) of component i without
presence of any other type of molecules, and Nij represents the cooperative or obstructive effects of
component j on component i. We apply L1 regularization on the non-diagonal terms of N matrices
to ensure that the total adsorption of a component is still mainly determined by itself. Among 8
components, three xylene isomers have the strongest steric hindrance, thus their locations in the
MFI zeolite structure when adsorbed are highly confined (see Figure 1C). This is reflected in the
weight matrices that only two of the four adsorption domains have large diagonal elements for these
molecules. Benzene, toluene, and ethylbenzene are slightly less hindered, allowing for more possible
adsorption locations and making their corresponding weights active in all four adsorption domains
learned. Hydrogen and ethane, however, are much smaller molecules than aromatic compounds, thus
their adsorption behavior and the distribution of weights differ significantly. The largely positive
rows of weights on these molecules in one of the adsorption domains indicate strong cooperative
adsorption effects, which is indeed confirmed by our simulation results that show their loading to be
positively correlated with the total uptake of aromatic compounds.

Figure 3: Weight matrices N in each attention head of the trained Adsorptive Transformer. Weights are
clamped into [−4, 4] for better visualization. Four attention heads are used since the average test set error does
not further decrease when increasing the number of heads above 4.

5 Conclusions

While comprehensive measurements in high-dimensional state space for multicomponent chemical
systems can be prohibitively expensive, our Adsorptive Transformer provides a new route toward
solving this challenge as it is able to generalize from mixtures with fewer components to those with
more components. Our preliminary results focus on “shallow” Adsorptive Transformers, deeper
models can be constructed analogously as for the regular transformer by stacking multiple attention
layers and pointwise feedforward layers. Our derivation for the Adsorptive Transformer also supplies
a novel view of interpreting the attention mechanism as a thermodynamic equilibrium. We hope that
this work will inspire research leading to the development of physics-informed machine learning
models for chemical and materials discovery.
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Appendix

Molecular Simulation Details Configurational-bias Monte Carlo simulations [27] are performed
in the isothermal-isobaric version of the Gibbs ensemble [28]. In these simulations, Ni molecules
for each of i species can distribute between two simulation boxes, a zeolite box and a vapor-phase
reservoir. The total compositionN total

i , temperature T , and pressure p are specified as the independent
variables. Monte Carlo moves are used to translate and rotate molecules within a given box, as well
as to exchange molecules between boxes and change the volume of the vapor box. Each simulation
is equilibrated for at least 20000 MC cycles, after which at least 40000 MC cycles are used for
production. During production, the average number of molecules of each type adsorbed in the zeolite
box (N zeo

i ) and remaining in the vapor box (Nvapor
i ) is measured — these are the dependent variables.
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