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Abstract

We present a deep-learning model for inferring missing molecules in reaction
equations. Such an algorithm features multiple interesting behaviors. First, it can
infer the necessary reagents and solvents in chemical transformations specified only
in terms of main compounds, as often resulting from retrosynthetic analyses. The
completion with necessary reagents ensures that reaction equations are compatible
with deep-learning models relying on a complete reaction specification. Second, it
can cure existing datasets by detecting missing compounds, such as reagents that
are essential for given classes of reactions. Finally, this model is a generalization
of models for forward reaction prediction and retrosynthetic analysis, as both
can be formulated in terms of incomplete reaction equations. We illustrate that a
single trained model, based on the transformer architecture and acting on reaction
SMILES strings, can address all three points.

1 Introduction

Deep-learning models applied to chemical reactions have received much attention in recent years:
from the design of algorithms for forward reaction prediction [1–3] and retrosynthetic analysis
[1, 4, 5] that help chemists plan the design and execution of chemical syntheses, to the generation of
reaction fingerprints [6] and prediction of reaction classes [7, 6], yields [8], or activation energies [9].

Several of the latter predictive models were trained on fully-specified reactions — i.e., they rely on
all the reagents being specified, including solvents and catalysts. Accordingly, when these models are
applied to new reactions, a complete specification of the reagents is required. Unfortunately, both
algorithms and chemists do not provide any guarantee of generating complete chemical reaction
equations. It is therefore desirable to infer the missing molecules to provide higher quality data and
to comply with a larger class of machine learning models.

In fact, an algorithm fulfilling this task can also be used for data curation. Many commonly-used
reaction datasets [10, 11] were generated by automatically text-mining chemical knowledge from the
unstructured data sources. The text-mining process is error-prone and often fails to recognize one or
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several precursor molecules. An approach for the completion of partial reaction equations can either
detect reactions that are potentially incomplete, or even automatically add the missing molecules,
before the dataset is used for other downstream applications.

Furthermore, the task of inferring missing compounds in a reaction equation is a generalization
of forward and single-step retrosynthetic prediction models. As a consequence, a properly tuned
algorithm completing partial reaction equations also a forward or retrosynthetic prediction model.

In this work, we present a deep-learning model based on the transformer architecture that infers the
molecules in partial reaction SMILES strings. This model does not contain any chemical knowledge
except the one learned from the data during training. We illustrate its application for data curation, as
well as its use for forward and retrosynthesis prediction. Figure 1 gives a few examples of partial
reaction equations and how they can be completed.

Partial reaction equation Missing molecules

1)

2)

3)

4)

5)

Figure 1: Partial reaction equations and associated missing molecules, corresponding to the input
and output of the model presented in this work. Example 1) corresponds to a complete reaction
equation, where no molecules are missing. Example 2) corresponds to a forward reaction prediction
task, where the model must predict the reaction product. Example 3) corresponds to a retrosynthetic
prediction, where the model infers potential precursors for a given molecule. Note that multiple
outputs are possible in this case. Examples 4) and 5) illustrate other cases of completing partial
reaction equations. The model introduced in this work, trained a single time, is able to tackle all these
different cases.

2 Method

2.1 Model

We used a modified version of the Molecular Transformer [3]. Both input and output of the model
are tokenized versions of reaction SMILES strings [12, 13]. Thereby, the input corresponds to the
potentially incomplete reaction equation, and the output contains the missing precursors and/or
products. When no precursor or product is missing, the reaction SMILES string will only contain the
token separating precursors and products, “>>”.

The transformer model is implemented with the OpenNMT-py library [14, 15]. The standard trans-
former implementations is applied with the following changes: the parameter layers is set to 4,
rnn_size to 256, word_vec_size to 256, max_generator_batches to 32, accum_count to 4
and label_smoothing to 0. We trained the model for 1,000,000 steps.

2.2 Data

The model was trained and tested on data derived from the US patent reactions by Lowe [10], as
post-processed by Pesciullesi et al. [16]. The data was obtained from the GitHub repository of
Ref. [16] and the same data splits were used.
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Figure 2: Frequencies of given number of
molecules in the partial reaction equations and
associated number of missing molecules.

349 252 203 135 117 104 76 68

54 52 48 38 37 32

31 26 26 26 25 23 22

21 19 17 17 16

Figure 3: Most frequent molecules (or groups
of molecules) inferred when applying the reac-
tion completion model on the ground truth data.
The number below each compound indicates the
number of reactions for which that compound
was predicted.

For training the reaction completion model, each reaction SMILES string in the original dataset was
transformed into ten partial reaction SMILES strings by selecting randomly, from the precursors and
products, the molecules to remove in the input. Thereby, this process generated reaction SMILES
strings with a variable number of missing molecules. The only criterion was that the resulting partial
SMILES string should contain enough tokens compared to the original reaction SMILES string, to
avoid generating partial reaction SMILES strings containing common reagents only.

This resulted in training, validation, and test sets of sizes 10.9 M, 0.6 M, and 0.6 M, respectively.
Figure 2 shows histograms for the number of molecules in the partial reaction SMILES strings,
against the number of removed molecules.

3 Results and discussion

In the following, we address the different applications of the reaction completion model. All the
calculations refer to the test split of the dataset. The “reference forward prediction model” refers to
the pretrained model presented in Ref. [16]. In Figure 4, we illustrate the application of our model to
a few reactions and compare the predictions with the expected value from the ground truth.

3.1 Partial reaction equations

The model achieves an accuracy of 30.4%. Note that the accuracy reflects exact matches only, where
all the molecules in the resulting reaction equation are identical to the ground truth. An exhaustive
evaluation of the reasons for not matching the 69.6% remaining cases lies outside the scope of this
work; an initial analysis shows that often solvents are missing either in the prediction or in the ground
truth, that some equivalent solvents or reagents are predicted instead of other ones, and that sometimes
the partial reaction equation leaves multiple possibilities open as to what the reaction should be.

We evaluated the correctness of the resulting reaction equations (combining the partial reaction
equation from the input and the model prediction) by assessing whether they are correct. To do so,
we inspected whether the reference forward prediction model delivered a consistent product. We
found out that this is the case for 77.6% of the reactions.

Applying the reaction completion model several times iteratively only leads to a marginal improve-
ment of the accuracy to 30.5%.
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Figure 4: Examples of reaction completion. The first reaction is an example where the model finds
correctly that a precursor and the product are missing. In the second example, the model predicts
a different solvent (methanol) than the ground truth (ethanol). The third example illustrates a case
where the application of the model to the original dataset reveals a missing precursor molecule. In
the fourth example, we illustrate the application of the model as a forward prediction model. There,
the dataset contained a mistaken product. The fifth example illustrates the application as a single-step
retrosynthesis prediction model. The model chooses different precursors than present in the ground
truth.

3.2 Application on ground truth data

By applying the reaction completion model to the the ground truth data, we found out that 2729 (out
of 60548) reactions were considered to be incomplete. A total of 493 distinct molecules (or groups
of molecules) were missing. The most frequently inferred molecules or groups of molecules are
depicted in Figure 1. While many of those relate to solvents, upon analysis it is evident that many
essential reagents are missing from the ground truth data.

3.3 Forward reaction prediction

By removing the products from the reaction equations, the reaction completion model can be applied
for reaction prediction. We compare our predictions with the ground truth (products that were
removed) and with the predictions of the reference forward prediction model. Our model achieves
68.1% accuracy, compared to 77.6% for the reference forward prediction model. Interestingly, for
9.4% of reactions, both models predict an identical product that differs from the ground truth. Upon
manual inspection, many of these examples correspond to mistakes in the underlying ground truth.

We also note that for 7.0% of the forward predictions, our model predicted some precursors in
addition to the products. Considering this, it may be that some of the predictions differing from the
ground truth would be correct if one took the additional precursors into account.

3.4 Single-step retrosynthesis

For the single-step retrosynthesis task, partial reaction SMILES strings including only the reaction
products were fed to the model. Accordingly, the predictions of the model contain only precursors. We
assess the predictions by calculating the round-trip accuracy [5]. Taking, for the forward prediction,
the model presented in this work, we obtain a round-trip accuracy of 81.5%. Using the reference
forward prediction model, the round-trip accuracy is 82.6%. These values are slightly higher than the
ones reported for transformer-based models for retrosynthesis [5]. A more extensive evaluation of
the application of the model to retrosynthesis requires the inspection of other metrics that will be
reported in a subsequent paper.
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4 Conclusion

The model for reaction completion introduced in this work, while simple in its formulation, can tackle
various tasks, including forward reaction prediction, single-step retrosynthesis and data curation. Our
model requires only a single training, which automatically ensures compatibility among the tasks and
may be beneficial for learning how molecules react. An interesting application of this model could
also be guided retrosynthesis, where a chemist knows some of the precursors or reagents to obtain a
given product and wishes to automatically complete the reaction equation. To improve the model and
reach the accuracy of existing forward prediction and retrosynthesis model, we expect some effort to
be needed in the generation of a more adequate dataset.

References
[1] Segler, M. H. S. & Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and

Reaction Prediction. Chem. - Eur. J. 23, 5966–5971 (2017).

[2] Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical
reactivity. Chem. Sci. 10, 370–377 (2019).

[3] Schwaller, P. et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical
Reaction Prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

[4] Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature 555, 604–610 (2018).

[5] Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a
hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

[6] Schwaller, P. et al. Mapping the Space of Chemical Reactions using Attention-Based Neural
Networks. ChemRxiv.9897365.v3 (2020).

[7] Schneider, N., Lowe, D. M., Sayle, R. A. & Landrum, G. A. Development of a Novel
Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification
and Similarity. J. Chem. Inf. Model. 55, 39–53 (2015).

[8] Schwaller, P., Vaucher, A. C., Laino, T. & Reymond, J.-L. Prediction of Chemical Reaction
Yields using Deep Learning. Chemrxiv.12758474.v1ChemRxiv.9897365.v3 (2020). Preprint at
https://doi.org/10.26434/chemrxiv.12758474.v1.

[9] Jorner, K., Brinck, T., Norrby, P.-O. & Buttar, D. Machine Learning Meets Mechanistic
Modelling for Accurate Prediction of Experimental Activation Energies. ChemRxiv.12758498.v1
(2020). Preprint at http://dx.doi.org/10.26434/chemrxiv.12758498.v1.

[10] Lowe, D. Chemical reactions from US patents (1976 - sep 2016) (2017).

[11] Nextmove Software Pistachio. (Accessed Oct 5, 2020).

[12] Weininger, D. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

[13] Weininger, D., Weininger, A. & Weininger, J. L. SMILES. 2. Algorithm for generation of
unique SMILES notation. J. Chem. Inf. Comput. Sci. 29, 97–101 (1989).

[14] Klein, G., Kim, Y., Deng, Y., Senellart, J. & Rush, A. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. In Proceedings of ACL 2017, System Demonstrations, 67–72
(Association for Computational Linguistics, Vancouver, Canada, 2017).

[15] OpenNMT-py library, version 1.2.0. https://github.com/OpenNMT/OpenNMT-py (Ac-
cessed Nov 19, 2019).

[16] Pesciullesi, G., Schwaller, P., Laino, T. & Reymond, J.-L. Transfer learning enables the
molecular transformer to predict regio- and stereoselective reactions on carbohydrates. Nat.
Commun. 11, 4874 (2020).

5

https://github.com/OpenNMT/OpenNMT-py

	Introduction
	Method
	Model
	Data

	Results and discussion
	Partial reaction equations
	Application on ground truth data
	Forward reaction prediction
	Single-step retrosynthesis

	Conclusion

