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Abstract

Deep generative models are by now able to devise both valid and novel chemistry
in a de novo molecule generation setting, which could significantly accelerate the
identification of bioactive compounds. Most current models, however, use ligand-
based predictive methods, to guide molecule generation to a bioactive chemical
space. This restricts their application to relatively data-rich targets, neglecting
those where little data is available to sufficiently train a predictor. In this work, we
now assess the ability of using molecular docking via Glide – a structure-based
approach – as a scoring function to guide the deep generative model REINVENT,
and compare model behaviour and performance to a ligand-based scoring function.
We show that the model improves predicted ligand affinity beyond known active
molecules. We also show that the structure-based approach learns to satisfy crucial
residue interactions (information only relevant when utilizing protein structure).
This approach has potential application where de novo molecule generation either
has no prior ligand knowledge available (early hit finding), or should not be biased
by it (novelty-focused).

1 Introduction

Deep generative models (DGMs) are a recent and promising class of de novo molecule generation
algorithms, which utilise advances in deep neural networks. They are able to generate valid chemical
structures by either learning from a dataset of example molecules, or learning appropriate actions
to take given a set of symbolic rules. Although these models vary greatly in method [1], de novo
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molecule generation typically has a single goal, to generate molecules towards a desired property
space - one such crucial requirement in drug design is bioactivity. In order to achieve this property,
most DGMs use ligand-based approaches. Such approaches include using known bioactive molecules
as training data to bias generation towards a similar property space[2–4], or using machine learning
(ML) models trained on known bioactive molecules to predict de novo molecule bioactivity - the
DGM can then be optimized to maximize this value e.g. using reinforcement learning[5–8], Bayesian
optimization[9] or particle swarm optimization[10].

However, the use of ligand-based ML models comes with its limitations. Namely, ligand-based ML
models are restricted by their applicability domain i.e. they perform well on ‘in distribution’ data,
but struggle to extrapolate to ‘out of distribution’ data, which is often poorly reflected in model
validation[11, 12]. This means that ML models will score molecules similar to those observed in the
training data more accurately[13]. Incorporation with DGMs biases de novo molecule generation to a
similar property space as the scoring function training data, which is usually just one of many possible
desirable property spaces. This contributes to the lack of diversity observed in deep generative
models[14, 15]. Further, Renz et al.[16] observed that DGMs bias molecule generation towards ML
parameters as well as training data via a set of ML controls. This bias limits the underlying principle
of exploring novel chemical space, which is favourable for finding optimal space with respect to other
required properties (such as pharmacokinetic profile) or for avoiding competing intellectual property.
This lack of novelty has been commented on in the literature[17]. Hence, the use of ligand-based
approaches in DGM scoring functions restricts practical use cases of DGMs.

This work We explored the idea that structure-based scoring functions, in a practical implementa-
tion using docking, may mitigate some of the limitations observed with ligand-based scoring functions.
In concrete terms, we utilized the REINVENT[5] algorithm and optimized de novo molecules to
minimize the docking score returned by Glide[18]. Further, to understand the differences between
ligand- and structure-based scoring functions, we compare the resulting de novo molecules to those
generated by an equivalent DGM optimized to maximize the predicted probability of activity via
a support vector machine (SVM). As a case study, we chose affinity for Dopamine Receptor D2
(DRD2). This receptor has a wealth of associated ligand bioactivity data allowing retrospective
validation and has been commonly used in deep generative model publications[5, 9, 19, 8, 15]. To
the best of our knowledge, neither this particular approach nor such a comparison has been published
in the literature.

2 Methods

2.1 Datasets

The training data used to train the DGM used in this work was extracted from the ZINC database[20]
by following the curation workflow described by MOSES[21]. We also removed any known DRD2
actives. This resulted in a database of 3,579,885 canonical, non-isomeric SMILES. As for the set of
bioactive compounds, we extracted molecules with known DRD2 bioactivity from ExCAPE-DB[22].
This resulted in 4,613 active and 343,075 inactive molecules against human DRD2. Lastly, for use as
a reference baseline, 10,000 random molecules were extracted from ChEMBL26[23].

2.2 REINVENT

We used the previously published REINVENT framework[5] as a proof of concept deep generative
model. The ZINC subset was used to train the Prior network for a total of 5 epochs with a batch size
of 128 using the Adam optimizer[24] with a learning rate of 0.001. The Agent was then trained for
3,000 steps using a batch size of 64 and the Adam optimizer with a learning rate of 0.0005 and a
value for the scalar coefficient (σ) of 60. All neural network training was conducted on an NVIDIA
RTX 2080 Ti GPU.

2.3 Scoring function and retrospective performance

Ligand-based We reused the SVM model previously published by Olivecrona et al.[5], where
the authors trained it on 7,218 active and 100,000 inactive DRD2 molecules, also extracted from

2



ExCAPE-DB. The performance was evaluated on an undisclosed held-out test set. Resulting in an
accuracy of 98%, precision of 97% and recall of 82%.

Structure-based We used the DRD2 X-ray crystal structure 6CM4 from the PDB and prepared
it using the Schrodinger Protein Preparation Wizard[25]. A grid was defined using the centroid of
the co-crystallised ligand (Risperidone) as the centre. Before docking, molecules were prepared
using LigPrep[26], enumerating unspecified stereocentres, tautomers and ionization states (up to
8 variants per molecule). All respective variants were then docked using Glide standard precision
(GlideScore-SP) with default settings. The lowest (best) docking score of all variants was used as
the resulting value for respective molecules. To make this task more computationally tractable, we
implemented a script that parallelized the docking protocol across a compute cluster using the python
library Dask[27]. Using between 36 and 50 CPUs, the wall time required for 3,000 iterations was
approximately 7 days. All known DRD2 active molecules and a random subset of 10,000 DRD2
inactive molecules were docked following the protocol described. A docking score classification
threshold of -8.5 led to an accuracy of 74%, precision of 82% and recall of 12%. This example
threshold was chosen so as to minimize false-positives among positive predictions.

3 Results and discussion

3.1 Optimization of docking score

We first investigated whether the Agent was able to optimize the respective properties evaluated by
the two scoring functions. We were able to reproduce the ability to maximize predicted probability of
DRD2 activity by the ’SVM-Agent’ - as reported previously[5]. We next evaluated the optimization
of DRD2 docking score by the ’Glide-Agent’, which is shown in Figure 1a. Put into the context
of reference datasets (Figure 1b), the trained Glide-Agent shows enriched docking score (µ =
−8.25, σ = 0.90) compared to Prior molecules (µ = −6.23, σ = 1.03) and even known DRD2
actives (µ = −7.34, σ = 1.04). Based on the assumption that a docking score of -8.5 corresponds to
82% precision (section 2.3), sampled de novo molecules have a hit rate of 32.72%, 6.84% and 0.67%
for the Glide-, SVM-Agent and Prior, respectively. In other words, the Glide-Agent shows 48-fold hit
rate enrichment over the Prior.

Figure 1: (a) Optimization of docking score distribution over training steps by the Glide-Agent
and (b) comparison of docking score distribution of trained Agent de novo molecules and reference
datasets.

3.2 Comparison to known DRD2 active molecules

To evaluate the relevance of de novo chemistry, we next assessed recovery of known DRD2 active
molecules via probability of recovery (Table 1). Firstly, the Prior has an inherent bias to generative
inactive molecules due to the removal of known actives from the training data. The Glide-Agent
shifts this bias towards active molecules 68-fold and the SVM-Agent 3,940-fold, however, this is
predominantly attributable to the SVM-Agents ability to avoid recovering known inactive molecules.
While the probability of recovering known active molecules is comparable between the Glide- and
SVM-Agents (21.54x10−6 vs 22.68x10−6, respectively). In summary, both Agents have the ability
to recover known DRD2 active molecules, albeit with different underlying behaviour.

3



Table 1: Probability of recovering known DRD2 active or inactive molecules, averaged across three
sample sizes of 10,000, 100,000 and one million structures.

Origin of Probability of generating Probability of generating Activity bias
dataset active molecule (x10−6) inactive molecule (x10−3) (fold change from Prior)
Prior 1.17 3.60 0.0003(1)

Glide-Agent 21.54 0.98 0.0221 (68)
SVM-Agent 22.68 0.02 1.2837 (3,940)

3.3 Chemical Space

To aid visualization of the chemical differences between de novo molecules, we used Uniform
Manifold Approximation and Projection (UMAP)[28] to project the molecules onto two dimensions;
either using Morgan fingerprints (Figure 2a) or physicochemical descriptors (Figure 2b). It can be
seen in Figure 2a that the Glide- and SVM-Agent de novo molecules occupy different regions of
chemical space, neither of which display a perfect overlap with known DRD2 active molecules.
In-fact, not one of the 10,000 de novo molecules sampled from either Agent is co-generated by both,
highlighting the complementarity between these two approaches. While Figure 2b shows that the
Glide-Agent de novo molecules occupy more diverse areas of physicochemical space than known
actives and SVM-Agent de novo molecules. This indicates that the Glide-Agent is not biased towards
the physicochemical properties of known bioactive molecules.

Figure 2: (a) UMAP of Morgan fingerprints based on a radius of 2 (equiv. ECFP4), and (b) of 13
physicochemical descriptors (all calculated using RDKit[29]).

3.4 Protein-ligand interactions

The highly conserved aspartic acid residue D3x32 provides a crucial interaction point required for
bioactivity among aminergic receptors [30, 31]. By inspecting docked poses (Figure 3a-d) we hence
observed more frequent satisfaction of D3x32 interactions by the Glide-Agent de novo molecules
(Figure 3c). This was corroborated (Figure 3e) by using Structure Interaction Fingerprints (SIFts)[32]
to analyze the ratio of molecules satisfying D3x32 interactions according to dataset. This shows that
the Glide-Agent de novo molecules more often also form a hydrogen bond with D3x32 in DRD2. This
could be an empirical explanation of how the Glide-Agent learns to optimize docking score.
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Figure 3: Docked pose of the centroids of the five best scoring clusters for (a) active, (b) Prior,
(c) Glide- and (d) SVM-Agent molecules. (e) Ratio of D1143x32 interactions satisfied by de novo
molecules according to dataset.

4 Conclusion

In this work we integrated generative molecular de novo design with structure-based molecular dock-
ing and compared results to ligand-based scoring functions. We show on a commonly used benchmark
dataset that this approach results in chemically sensible molecules, which are able to improve docking
scores beyond that of known receptor ligands, while exhibiting increased physicochemical diversity
compared to ligand-based scoring. The setup presented here facilitates the use of deep generative
models in settings also where no ligand data is available, or novelty is of particular interest (provided
an X-ray crystal structure or a suitable homology model is available). Further validation on a variety
of protein targets is both required and ongoing. Future work is also intended to further investigate the
impact of incorporating prior structural knowledge, such as particular water/residue interactions that
can affect selectivity.
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