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Abstract

Chemical reactions describe how precursor molecules react together and trans-
form into products. The reaction yield describes the percentage of the precursors
successfully transformed into products relative to the theoretical maximum. The
prediction of reaction yields can help chemists navigate reaction space and accel-
erate the design of more effective routes. Here, we investigate the best-studied
high-throughput experiment data set and show how data augmentation on chemical
reactions can improve yield predictions’ accuracy, even when only small data
sets are available. Previous work used molecular fingerprints, physics-based or
categorical descriptors of the precursors. In this manuscript, we fine-tune natural
language processing-inspired reaction transformer models on different augmented
data sets to predict yields solely using a text-based representation of chemical reac-
tions. When the random training sets contain 2.5% or more of the data, our models
outperform previous models, including those using physics-based descriptors as
inputs. Moreover, we demonstrate the use of test-time augmentation to generate
uncertainty estimates, which correlate with the prediction errors.

1 Introduction

The synthesis of new chemicals affects numerous aspects of our life, ranging from food and medicine
to novel materials for technological applications. The current machine learning revolution in auto-
mated synthesis can significantly accelerate novel materials and molecules’ development. In the last
years, natural language processing methods emerged as robust and effective approaches in the field
of organic chemistry, showing promising results in reaction prediction (1; 2; 3; 4), retrosynthesis
planning (5; 6; 7; 8), data curation (9) and synthesis action generation (10; 11). In those studies the
encoder-decoder transformer models introduced by Vaswani et al. (12) excel among all other neural
network architectures. More recently, the use of encoder-only transformers such as BERT (13; 14)
led to advances in reaction classification and fingerprints (15), as well as in unsupervised reaction
atom-to-atom mapping (16) and reaction yield predictions (17).

Reaction yields describe the percentage of the reactant molecules converted into the desired product
molecule during a chemical reaction. The prediction of reaction yields can guide chemists in selecting
the next experiments to perform, and retrosynthetic planning tools in aiming for routes that maximize
the overall yield, thus minimizing waste. Extensive chemical reaction yield data sets exist for high-
throughput experiments (HTE). Examples are the Suzuki–Miyaura coupling reactions by Perera et
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al. (18) and the palladium-catalyzed Buchwald–Hartwig reactions by Ahneman et al. (19), to date the
best-studied HTE yield data set. In this work, we study reactions yield prediction using the latter data
set (19), containing a total of 3955 Buchwald–Hartwig reactions with measured yields. Figure 1 a)
provides an overview of the data set.

In a recent manuscript, Schwaller et al. (17) introduced a BERT (13) model with a regression head
to predict reactions’ yields given as input a reaction SMILES (20; 21), a text-based molecule and
reaction representation. We show in Figure 1 a) and c) the task description, together with an example
of a reaction SMILES. Here, we investigate how different data augmentation techniques (Figure 1 b),
molecule permutations and SMILES randomizations (22; 23; 24; 8)) improve the performance of the
yield prediction models. Moreover, we demonstrate the use of test-time augmentation (Figure 1 d)) to
provide uncertainty estimates (25) on the reaction yields, that correlate with the predictions’ errors.
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Figure 1: Training/evaluation pipeline and task description.

2 Results & Discussion

Our models were trained using Simpletransformers (26), huggingface transformers (27), PyTorch
(28) and scripts adapted from the RXN yields github repository (17; 29). Canonicalizations and
augmentations were done using RDKit (30). As described in the work of Schwaller et al. (17),
fine-tuning a pretrained reaction BERT model (15) for a specific task provides the advantage of
having most of the hyperparameters already optimized and fixed. Schwaller et al. (17) tuned only the
dropout probability and the learning rate on the training data of the first random split, further split
into a smaller training and validation set. Here, we initialized the dropout and learning rate using
the values reported in (17) and we determined the optimal numbers of data augmentations using
the same training/validation set. We investigated the two data augmentation techniques: molecule
permutations, where we randomly shuffle the order of the precursors, SMILES randomizations, where
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we generated multiple randomized SMILES for a given molecule (24), and the combination of the
two. Examples of augmented reactions and molecules are shown in Figure 1 b).

2.1 Yield prediction

Most of the results in the literature were published on 70%/30% (training/testing) random splits. In
Table 1, we compared the results of the canonical order, the permuted precursors, the randomized
SMILES and the combination of both permutation plus randomization to previous studies (19; 31;
32; 17). While the use of the canonical order SMILES representation plus BERT with a regression
head (17) already outperforms one-hot encodings (31), physics-based descriptors (19) and multi-
fingerprint features (32) plus a random forest regressor, here we significantly improve the R2 score
using randomization. The same number of training augmentations, as stated in Table 1, was used
throughout this work.

Table 1: Random splits 70/30, averaged over 10 splits

R2 # samples/augmentations per rxn mean std

canonical 1 0.951 0.005
permuted 5 0.964 0.003
randomized 15 0.970 0.003
permuted, randomized 15 0.970 0.003

MFF + RF (32) 0.927 0.007
DFT + RF (19) 0.92
one-hot + RF (31) 0.89

Moreover, we investigated the prediction performance on reduced training sets (Table 2), an experi-
ment also performed by Ahneman et al. (19). We observed that using SMILES randomization, we
outperformed all other approaches, using only 2.5% (or 98 data points). Although deep learning
models are typically criticized as being data-hungry, our combination of a pretrained base-encoder
(15) and data augmentation leads to accurate predictions in the small data regime.

Table 2: Reduced training sets, averaged over 10 splits

R2 2.5/97.5 5/95 10/90 20/80 30/70 50/50

can 0.45 ± 0.05 0.61 ± 0.04 0.79 ± 0.02 0.86 ± 0.01 0.88 ± 0.01 0.92 ± 0.01
permuted 0.47 ± 0.13 0.70 ± 0.06 0.81 ± 0.02 0.87 ± 0.02 0.90 ± 0.01 0.94 ± 0.01
randomized 0.61 ± 0.04 0.74 ± 0.03 0.81 ± 0.02 0.89 ± 0.01 0.92 ± 0.01 0.95 ± 0.01
perm&rand 0.57 ± 0.08 0.71 ± 0.04 0.81 ± 0.02 0.89 ± 0.01 0.91 ± 0.01 0.95 ± 0.01

DFT+RF (19) 0.59 0.68 0.77 0.81 0.85 0.9

The data set of Ahneman et al. (19) also contains four out-of-sample splits, for which certain additives
are only present in the test set. The results in Table 3 show that the models trained on canonical
reaction SMILES without data augmentation perform best. For Test 4, the additives of the training set
are the least representative of the ones in the test data. Therefore, the model trained on randomized
SMILES, which better captures the patterns in the training data, unsurprisingly performs worse on
that set.

2.2 Uncertainty estimation

We introduce test-time augmentation to provide an uncertainty estimation on our yield predictions.
We input several data augmented versions of the same reaction and output the predicted yield
as the average of the predicted yields using their standard deviation as the uncertainty estimate.
Doing so does not significantly change the R2 score. We measure the quality of the uncertainty
estimates by computing the spearman’s rank correlation coefficient (ρ) between absolute error and
standard deviation of predicted yields, similar to the work by Hirschfeld et al. (33) on uncertainty
quantification for molecular property predictions. The coefficient ranges between -1 and 1 and
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Table 3: Out-of-sample test splits, averaged over 5 random seeds

R2 Test 1 Test 2 Test 3 Test 4 Avg.

canonical 0.84 ± 0.01 0.84 ± 0.03 0.75 ± 0.04 0.49 ± 0.05 0.73 ± 0.15
permuted 0.82 ± 0.01 0.90 ± 0.01 0.63 ± 0.05 0.43 ± 0.07 0.69 ± 0.19
randomized 0.80 ± 0.01 0.88 ± 0.02 0.56 ± 0.08 0.07 ± 0.04 0.58 ± 0.33
perm&rand 0.79 ± 0.09 0.90 ± 0.01 0.55 ± 0.05 0.27 ± 0.14 0.63 ± 0.26

MFF + RF (32) 0.85 0.71 0.64 0.18 0.60
DFT + RF (19) 0.8 0.77 0.64 0.54 0.69
one-hot + RF (31) 0.69 0.67 0.49 0.49 0.59

measures the monotonic relation between errors and uncertainty estimates. Figure 2 a) shows that ρ
increases for all augmentation methods with the number of test-time augmentations and converges to
values above 0.4. For the example plots in Figure 2 b) and Figure 2 c), we used the models trained
on randomized SMILES and applied 10 test-time augmentations. In Figure 2 b), we show how the
predicted values get more certain and precise when increasing the data set from 2.5% to 70%. The
out-of-sample test set plots in Figure 2 c) show that the uncertainty estimate correlates well with the
error. Points with a larger error are generally more uncertain. Moreover, the models consistently
predict a high yield for the reaction with the highest experimental yield independently of the split.
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Figure 2: a) Spearman’s rank correlation coefficient with increasing number of test time augmen-
tations. b) Predictions and uncertainty on random split 01 with 2.5% and 70% training data using
a fixed molecule order and 10 SMILES randomizations (randomized). c) Out-of-sample test set
predictions using a fixed molecule order and 10 SMILES randomizations (randomized). Uncertainty
scale was kept the same for all plots and capped at 4.0. MAE = mean average error, RMSE = root
mean squared error, UQ = spearman’s coefficient ρ.

3 Conclusion

In this manuscript, we presented augmentation strategies to increase reaction yield prediction using
as input solely a text-based representation of chemical reactions. Even in a small data regime, a
reaction BERT with regression head fine-tuned on randomized molecule representations was able to
outperform physics-based descriptors plus random forest (19). Although data augmentations result
in worse performance for strongly dissimilar out-of-sample test reactions, we show that test-time
data augmentations can provide uncertainty estimates without the need of model retraining. The
uncertainty estimates correlate with the error of the predictions and could be used to guide the chemical
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space exploration (34; 35; 36; 37). The code and 400 trained models to produce the results described
in this work are available for download (https://github.com/rxn4chemistry/rxn_yields).
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