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1 Introduction

Deep learning has registered a tremendous success in the recent past. However, most of the applica-
tions are still limited to data in the form of fixed-size feature vectors (tensors). There are nevertheless
many domains where the learning examples are highly structured and do not succumb themselves
easily to the precanned form of numeric tensors. Particularly, important problems arise around
molecular data, which can be understood as attributed graphs of atoms connected via chemical bonds.

To address the problem of deep learning from such structured data (i.e. without preprocessing into
feature vectors) Graph Neural Networks (GNNs) have been proposed [7, 12]. GNNs can be viewed
as a continuous, differentiable version of the famous Weisfeiler-Lehman (WL) label propagation
algorithm used for graph isomorphism refutation checking [11]. In GNNs however, instead of discrete
labels, a continuous node representation (embedding) is being successively propagated into nodes’
neighborhoods, and vice versa for the corresponding gradient updates, which can be derived w.r.t.
some learning target, such as atom or molecule classification. This paradigm has recently become
highly popular [14]. Nevertheless, there are still considerable limitations to this class of models,
stemming from the limited expressiveness of the WL test which is only based on the immediate
neighborhood information gathered in each iteration [13, 5]. Consequently, information about more
complex relational substructures, such as atom rings in molecules, cannot be properly extracted.

In this paper we demonstrate a deep learning framework which is inherently based in the highly
expressive language of relational logic, enabling to, among other things, capture arbitrarily complex
graph structures. We show how GNNs and similar models can be easily covered in the framework by
specifying the underlying propagation rules in the relational logic. The declarative nature of the used
language then allows to easily modify and extend the propagation schemes into complex structures,
such as the molecular rings which we choose for a short demonstration in this paper.

2 Lifted Relational Neural Networks

We follow up on the framework of Lifted Relational Neural Networks (LRNNs) [8] allowing for
templated modeling of diverse neural architectures oriented towards relational data1. It can be under-
stood as a differentiable version of simple Datalog [10] programming, where the learning templates,
encoding various neuro-relational architectures, take the form of parameterized logic programs [1].
It differs from the commonly used frameworks (e.g. TensorFlow) in its declarative nature, which is
particularly useful for relational learning problems, such as learning with molecules [9].

1the framework is available at https://github.com/GustikS/NeuraLogic

Machine Learning for Molecules Workshop at NeurIPS 2020. https://ml4molecules.github.io

https://github.com/GustikS/NeuraLogic
https://ml4molecules.github.io


2.1 Learning Examples

In LRNNs, the learning examples are commonly represented with weighted ground logical facts. A
learning example is then a set E = {(V1, e1), . . . , (Vj , ej)}, where each Vi is a real-valued tensor
and each ei is a ground fact, i.e. expression of the form

1 V1 : : p1(c
1
1, . . . , c

1
q) .

2 . . .
3 Vj : : pn(c

n
1 , . . . , c

n
r ) .

where p1, . . . , pn are predicates with corresponding arities q, . . . , r, and cji are arbitrary con-
stants. Note that this representation allows to encode arbitrary information about atoms (e.g.
2.35::ionEnergy(c1, level2)) and their conformations (e.g. [2.7,−1]::bond(c1, o2)) in molecules,
as demonstrated in the left part of Fig. 1.

2.2 Learning Template

The learning program, i.e. the declarative template, is then set of parameterized rules T =
{αi, {Wαi

j }} = {(W i, c)← (W i
1, b1), . . . , (W

i
k, bk)}, i.e. expression of the form
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where hji ’s and bji ’s are predicates forming positive, not necessarily different, literals, and Wj
i’s are

the associated tensors (also possibly reused in different places). Note that the template does not have
to encode a particular model or knowledge about the problem. Instead, it can merely encode a generic
mode of computation such as, for instance, the GNN propagation scheme.

Example 1 (GNN) Consider a simple template for learning with molecules, encoding a generic idea
that the representation (h(.)) of a chemical atom (e.g. a(o1)) is dependent on the atoms adjacent to
it. Given that a molecule can be represented by the set of contained atoms (e.g. a(h1)) and bonds
between them (e.g. b(h1, o1)), we can encode this idea by a following rule (the gnn rule):

1 Wh1 : : h ( X ) :- Wa :a ( Y ) , Wb : b ( X,Y ) .

where X,Y are free variables. Moreover, one might be interested in using the representation of all
atoms (h(X)) for deducing the representation of the whole molecule (q), for which we can write

1 Wq : : q :- Wh2 :h ( X ) .

2.3 Computation Graphs Defined by LRNNs

Here we briefly outline the mapping from a learning template T and exampleEl onto a (differentiable)
computation graph Gl. For that, we take Nl = T ∪ El and construct the least Herbrand model Nl of
Nl, which can be done using standard theorem proving techniques [2]. Next we project the derived
logical constructs onto specific node types in the computation graph Gl, the structure of which,
broadly speaking, reflects the structure of the derived proof paths. An overview of the node types and
their correspondence to common GNN terminology is in Tab 1. For further details we refer to [8].

Example 2 (GNN cont’d) Let us extend the template from Ex. 1 with descriptions of two example
molecules of hydrogen and water. The derived computation graphs are then displayed in Fig. 1.
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GNN terminology Logical constructs Type of node Notation
Input data Ground fact h Fact node F(h,~w)

Convolution Ground rule’s αθ body Rule node Rcθ(W c
0 cθ←Wα

1 b1θ∧···∧Wα
k bkθ)

Pooling Rule’s α ground head h Aggregation node Gh=cθi(W c
0 c←Wα

1 b1∧···∧Wα
k bk)

Combination Ground atom h Atom node Ah

Table 1: Correspondence between the common GNN terminology and LRNN transformation of a
logical ground (Herbrand) model into a computation graph.
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Figure 1: A simple LRNN template with 2 rules described in Ex. 1. Upon receiving 2 molecules, 2
neural computation graphs get created, as prescribed by the LRNN semantics (Sec. 2.3).

3 Extending GNNs with Rings

We have introduced how standard GNNs can be easily encoded in LRNNs in Ex. 1. Note that the
example templates discussed in this paper are actual code that can be run very efficiently. For a more
detailed description and comparison with existing GNN frameworks we refer to [9]. Now we provide
a short demonstration on how to reach beyond GNNs with the molecular rings. Using the language
of relational logic, a ring can be easily defined as a crisp pattern based on the existing bonds as

1 _ r i n g 6(A, . . . , F ) :- bond(A,B), . . . , bond(E,F ), bond(F,A) .

A distributed representation of a ring can then be declared by aggregating all the contained atoms:

1 Wr : : r i n g (n)
6 (A, . . . , F ) :- _ r i n g 6(A, . . . , F ), Wa : a tom (n)(A), . . . , Wf : a tom (n)(F ) .

These can be further stacked hierarchically, replacing the crisp _ring6 pattern by the respective
distributed representation ring(n−1)

6 from the preceding layer. Similarly, we can then also propagate
the representation from the ring back into all the contained atoms by simply adding the following rule

1 Wa′ : : a t o m (n)(A) :- Wr′ : r i n g (n−1)
6 (A, . . . , F ) .
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Figure 2: Comparison of the gnn, rings, and the joint gnn+ rings learners across several molecule
classification datasets w.r.t. training (left) and testing (right) dispersion (higher is better).

Note that each ring pattern will be automatically instantiated in all possible revolutions, and so it is
enough to specify propagation into the “first” atom (A) only. We further refer to this template as
rings. We note that it is a good practice to add some basic transformation to produce at least some
output should a molecule contain no rings at all, e.g. simply aggregating all pairs of connected atoms:

1 Wq : : m o l e c u l e :- W1 : a tom (A ) , W2 : a tom (B ) , bond(A,B ) .

Naturally, this can be further combined with the standard GNN propagation scheme (Ex. 1), where
we aggregate the direct neighbor representations:

1 Wh : : a t o m (n)(X) :- W1′ : a tom (n−1)(Y ), bond (X,Y ) .

In each layer n, the representation of an atom will thus get updated based on the neighbors as well as
all the atoms occupying the same rings. The particular contributions to the representation update are
then parameterized separately. We further refer to this joint template as rings+ gnn.

3.1 Experiments

For the experiments we encoded both 5 and 6 rings, added 3 layers for both the gnn and rings
embedding propagation, and set all the learnable tensor to randomly initialized 3× 3 matrices. We
then evaluated the architectures across several datasets for molecule classification [6, 4, 3], ranging
from 188 to app. 3500 molecules. We note we only used the basic information on atom types and
their conformations. We left all the hyperparameters of the framework on their defaults, learning with
tanh activations, avg aggregations, and ADAM optimizer, trained for 2000 steps, and evaluated
with a 5-fold cross-validation. The results are displayed in Fig. 2. We can see that the rings template
indeed performs better than the basic gnn learner, while both benefit from their mutual combination.

4 Discussion

We have demonstrated a deep relational learning framework of LRNNs [8] on a small learning
scenario designed to extend the basic GNN idea to capture molecular rings. Note that all we had
to do was to declare a couple of simple rules specifying (i) what a ring is and (ii) how to update
representation of its contained atoms. The derivation of the particular dynamic computation graphs,
encoding the respective propagation scheme for each of the differently structured molecules, the
corresponding gradients, training and evaluation were then all performed completely automatically.
This allows for quick prototyping of diverse relational modelling ideas, where one can stack complex
structural patterns to be trained end-to-end with gradient descend. In the particular showcase just
demonstrated, we were then able to quickly evaluate the contribution of atom rings to basic GNNs.
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