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Abstract

Many molecular computing and information processing applications rely on the
identification of individual molecules within complex, potentially reacting mixtures.
While identifying molecules from within such complex mixtures can in certain
situations be performed with a single spectroscopic tool, such as mass spectrometry
or nuclear magnetic resonance (NMR), there are many situations in which this task
requires multimodal measurements using several different spectroscopic tools. To
guide chemists in their selection of which measurement tools (modalities) to use to
interrogate such solutions, we leverage deep learning methods and electronic struc-
ture calculations to generate mass, NMR, and infrared (IR) spectra for thousands
of organic compounds from the GDB-13 database. We convert this information
into spectral fingerprints that serve as addresses for where molecules lie in their
high-dimensional spectral space. Using hierarchical clustering, we compare our
multimodal spectral fingerprints to fingerprints generated using IR or NMR data
alone, as well as to extended connectivity fingerprints to highlight the similarities
and differences between our spectral space and other notions of chemical space.

1 Introduction

The need to accurately identify a multitude of species within a single solution routinely arises in the
fields of molecular computing and metabolomics. Molecular computing looks to store information in
and compute with vast collections of different molecules in a single solution [1, 2, 3, 4, 5], whereas
metabolomics seeks to understand the relationship between the metabolites within an organism and
its phenotype [6, 7, 8]. These fields require understanding the makeup of complicated solutions and
the reactions that may be occurring within them. Thus, spectroscopies and spectrometries that can
unambiguously and efficiently identify all of the species in these solutions are crucial.

Chemists have developed an arsenal of spectroscopic tools including infrared (IR), Raman, nuclear
magentic resonance (NMR), and electron paramagnetic resonance spectroscopies, that can each
identify different molecular features. To date, the selection of which tool to use to interrogate
a solution has overwhelmingly been guided by personal experience, instrument availability and
compatibility, and cost. However, there is little reason to believe that such ad hoc selections are even
remotely optimal, leaving room for the development of more methodical selection techniques.

To determine which combinations of spectroscopies should be used to decipher a complex molecular
mixture, one needs to understand how far apart species of interest are from one another in spectral
space, the multidmensional space formed from all possible spectroscopic measurements. The closer
two species are to one another in spectral space, the more difficult it is to distinguish them from one
another. Moreover, two species at a fixed distance in spectral space may appear closer together or
farther apart depending upon which spectroscopies are used to interrogate them (or, in other words,
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along which axes their distances are projected). Resolving the contours of spectral space would not
only inform researchers of whether molecular systems can be spectrally resolved using current tools
but also of which tools would be best suited for doing so.

While there exist other methods that learn high dimensional molecular representations in an unsu-
pervised fashion [9], little work has focused on characterizing the spectral space of a given set of
molecules [10, 11, 12]. This paucity of work may in large part be attributed to the historical difficulty
associated with assembling the spectral properties of a large number of species, either experimentally
or computationally. However, the door to characterizing spectral space has recently been opened by
automation tools that enable numerous spectra to be taken in relatively short periods of time and the
development of machine learning techniques that can accurately and efficiently predict IR, Raman,
NMR, and other spectra [13, 14, 15].

In this work, we leverage electronic structure simulations and machine learning algorithms to assemble
the IR, NMR, and mass spectra of thousands of small molecules and use these spectra to assemble
spectral fingerprints for each of these species. We then employ hierarchical clustering techniques to
shed light on how our spectral fingerprints differ from popular extended connectivity fingerprints and
how different spectroscopies can be combined to most effectively distinguish similar small molecule
species from one another.

2 Methods

2.1 Molecular Datasets

We construct our spectral fingerprints from three subsets of molecules from the GDB-13 database
[16], the largest publicly-available database of chemical species. Our molecules are drawn from the
GDB-13 ABCDEFG subset, which contains roughly 13 million molecules. We create two of our
three datasets (MW150 and MW180) by selecting molecules with molecular weights of 150.043
and 180.137 Daltons. These datasets enable the analysis of variation solely in the IR and NMR
dimensions of spectral space. We create a third dataset (Mixed MW) without any restrictions on
molecular weight, allowing us to consider molecules a larger range of functional groups and ring
structures. These three datasets are thus representative of a wide range of potential pharmaceutical
targets in organic synthesis and small molecules used in chemical information processing, and have
sizes of 1290, 10914, and 873, respectively.

The parent molecular masses are computed using RDKit [17], which is a computational chemistry
package that can compute exact molecular weights with up to 11 decimal places of accuracy. We
simplify our representation of these spectra to their single parent peak masses in this work.

2.2 H1-NMR Fingerprint Generation

In order to supplement our spectral fingerprints with proton NMR information, we use deep learning
methods to predict the NMR spectra of the molecules in our datasets. There are no public experimental
databases that contain the NMR spectra of even a small fraction of our molecules, so we use the
SPINUS algorithm [18, 19, 20] to generate predictions for our datasets. The SPINUS algorithm
leverages an ensemble of 75 independently trained deep neural networks to predict chemical shifts
and J-J coupling constants.

The H1-NMR spectra are converted into binary vector representations, in which each vector bin
represents a range of ppm values. The [0, 1] value in a given bin quantifies if the molecule has a
signal or multiple signals within that ppm range. Our NMR vectors have fixed bin widths of 0.01
ppm, which results in only a few instances of overlapping signals; bins that are too small produce
vectors that are too sparse.

2.3 Infrared Fingerprint Generation

To add the IR dimensions of spectral space, theoretical predictions of normal mode frequencies are
computed with the Molpro program [21]. Ground state geometries are optimized at the spin-restricted
Kohn-Sham level using the B3LYP hybrid functional and the 6-31G* basis. Raw frequencies are
scaled using a precomputed vibrational scaling factor for B3LYP/6-31G* (0.960 ± 0.022) [22]. The
IR fingerprint vectors are also constructed using binning, with peak intensities below 5% not included.
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Figure 1: Creation of the spectral fingerprint of the molecule COc1nccc2ocnc12.

We use a bin width of 0.01 cm−1 since, as with the NMR vectors, denser vectors produce better
results. The value at the index of the vector corresponding to a given bin represents the highest
intensity signal in that bin’s range of wavenumbers.

After creating vectors representing the H1-NMR and IR spectra of a molecule, we concatenate them
together to construct a multimodal spectral fingerprint. This process is illustrated in Figure 1 for the
molecule represented by the SMILES string COc1nccc2ocnc12. We use these combined fingerprints
and the individual IR and NMR vectors for each data set in our clustering analysis.

2.4 Hierarchical Clustering and Dendrogram Visualization

Hierarchical clustering is performed on our three datasets using Morgan (ECFP6, 2,048 bits) [23], IR,
NMR, and IR+NMR fingerprints. We use Ward’s method [24] to perform agglomerative clustering
based upon the Euclidean distance between the fingerprints. To visualize our spectral space dendro-
grams, we use Gephi, which is a graph and network visualization platform [25]. Again, we perform
hierarchical clustering on our different fingerprints to generate a set of nodes and edges using the
UPGMA method. The resulting nodes and edges are input into the Gephi software to visualize our
dendrograms. Within the Gephi software, we use the MultiGravity ForceAtlas2 [26] and Yifan Hu
Layout [27] algorithms to orient the nodes and clusters in the visualizations.

3 Results

We compare the hierarchical clustering and dendrograms of our spectral fingerprints and ECFP6
fingerprints. We only include results on the MW150 and Mixed MW datasets for brevity.

3.1 Hierarchical Clustering Panels

Figure 2: Clustering panels for the (left) MW150 dataset and (right) MixedMass dataset for the IR,
NMR, IR + NMR, and ECFP6 fingerprints. Cluster color assignments are determined by a distance
threshold that is 0.7 times the maximum distance between any two molecules.
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In Figure 2, we present the results of our clustering analysis on the different fingerprints of the
MW150 and Mixed MW datasets. For the MW150 panels, each fingerprint produces three primary
clusters. In the IR, NMR, and IR+NMR panels, the orange cluster is by far the largest cluster,
while the ECFP6 panel has clusters that are more comparable in size. This suggests that IR-based
and NMR-based fingerprints differentiate MW150 dataset molecules based upon a handful of key,
divergent features at large distances, but possess far less discriminatory power after these features are
taken into account. The ECFP6 fingerprints are better able to discriminate features at all distances.
For the Mixed MW Dataset, we see that the IR fingerprint generates four major clusters, while
the NMR and IR + NMR fingerprints generate three major clusters. The ECFP6 fingerprint only
generates two major equally-sized clusters. Both the IR + NMR and ECFP6 fingerprints exhibit
strong discriminatory power as they create large, evenly-sized clusters. However, the fingerprints
only consisting of IR and NMR spectral information lack the same ability, as they create numerous
small clusters in each of their major clusters.

3.2 Dendrogram Visualizations

Figure 3 depicts our dendrogram visualizations that illustrate the clustering structure for each type
of fingerprint. The ECFP6 and IR + NMR fingerprints produce more coherent and larger clusters
than the IR-only and NMR-only fingerprints. Furthermore, we visualize the presence of molecules
that contain a specific substructure in red; the dendrograms show that the ECFP6 and IR + NMR
fingerprints cluster compounds that contain similar substructures, while the IR and NMR fingerprints
group together other molecular features.
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Figure 3: Dendogram visualization of the MW150 and Mixed MW clusters. Red points denote
compounds that contain the substructure denoted by the SMARTS formula.

4 Conclusions

In this work, we employ modern computational chemistry and deep learning techniques to assemble
and analyze the mass spectral, NMR, and IR fingerprints of thousands of organic compounds from
the GDB-13 database. We perform hierarchical clustering and visualize the resulting dendrograms to
illustrate the clustering properties of our spectral fingerprints compared to those of ECFP6 fingerprints.
Our spectral fingerprints display discriminatory power similar to that of the topological fingerprints,
and illustrate that clustering can be successfully performed along key spectral dimensions. Our novel
procedures for generating large spectral datasets and our hierarchical clustering analyses facilitate
an improved understanding of spectral space, which will guide chemists seeking to interrogate the
complex solutions that typify molecular computation applications and metabolomics.
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