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Abstract

Retrosynthesis—the process of identifying a set of reactants to synthesize a target
molecule—is of vital importance to material design and drug discovery. Existing
machine learning approaches based on language models and graph neural networks
have achieved encouraging results. In this paper, we propose a framework that
unifies sequence- and graph-based methods as energy-based models (EBMs) with
different energy functions. This unified perspective provides critical insights about
EBM variants through a comprehensive assessment of performance. Additionally,
we present a novel “dual” variant within the framework that performs consistent
training over Bayesian forward- and backward-prediction by constraining the agree-
ment between the two directions. This model improves state-of-the-art performance
for template-free approaches where the reaction type is unknown.

1 Introduction
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Figure 1: Retrosynthesis and SMILES.

Retrosynthesis is a critical problem in organic chemistry
and drug discovery [1–4]. As the reverse process of
chemical synthesis, the goal of retrosynthesis is to find
the set of reactants that can synthesize the provided tar-
get via chemical reactions (Figure 1). The search space
of theoretical feasible reactant candidates is enormous;
hence, smart design of algorithms is required such that
the model has the expression power to learn chemical
rules while maintaining computational efficiency.

Recent machine learning applications for retrosynthesis,
including sequence- and graph-based models, have made significant progress. Sequence-based
models treat molecules as one-dimensional token sequences (SMILES [5], bottom of Figure 1) and
formulate retrosynthesis as a sequence-to-sequence problem, where recent advances in neural machine
translation [6–9] can be applied. LSTM-based encoder–decoder frameworks and, more recently,
transformer-based approaches have achieved promising results [9–12]. Graph-based models, on the
other hand, have a natural representation of human-interpretable molecular graphs, where chemical
rules are easily applied. Graph-based approaches that perform graph matching with chemical rules
(“templates”; see the definition below) or reaction centers have reached encouraging results [13, 14].

Our goal here is to provide a unified view of both sequence- and graph-based retrosynthesis models
using an energy-based model (EBM) framework. Within the framework, both types of models can
be formulated as different EBM variants by instantiating the energy score functions into specific
forms. A unified view is critical to provide insights into different EBM variants, as it’s easy to
extract commonalities and differences between EBM variants, understand strengths and limitations in
designing models, compare the complexity of learning or inference, and inspire novel EBM variants.
Note that here we are focused on one-step retrosynthesis, instead of multi-step planning; the design
of the former case can be recursively applied to the latter. To summarize our contributions:
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• We propose a unified EBM based framework that integrates sequence- and graph-based
models for retrosynthesis.

• Based on this unified framework, we propose a novel Dual EBM variant that performs
consistent training over forward and reverse prediction directions.

• We provide comprehensive empirical studies on multiple EBM variants and show that our
proposed Dual model improves the state-of-the-art accuracy by 9.6% for template-free and
2.7% for template-based approaches.

2 Retrosynthesis Model

2.1 EBM framework for retrosynthesis

An energy-based model [15–17] defines the distribution using an energy function. Without loss of
generality, we define the joint distribution of product and reactants as follows:

pθ(X, y) =
exp(−Eθ(X, y))

Z(θ)
(1)

where the partition function Z(θ) =
∑
y

∑
X exp(−Eθ(X, y)) is a normalization constant to ensure

a valid probability distribution. EBMs are well known for flexibility. By instantiating the energy
score E(θ) with different designs and extra normalization conditions, EBMs can be used to unify
many existing probabilistic models, including some directed graphical models like the autoregressive
models. It is also easy to obtain arbitrary conditioning with different partition functions. For example,
the predictive model for a chemical reaction can be obtained by pθ(y|X) = exp(−Eθ(X,y))∑

y′ exp(−Eθ(X,y′))
.

However, learning EBMs with maximum likelihood estimation (MLE) is notoriously difficult in
general, as the partition function Z(θ) is generally intractable. We will discuss trade-offs between
capacity and learning tractability in detail (see below). Overall, the proposed framework works
as follows: (1) design and train an energy score function Eθ, and (2) use Eθ for inference in
retrosynthesis.

Inference with EBM for retrosynthesis: With the trained Eθ∗ , inference identifies the best X
that minimizes the energy function for given ytest, i.e. X test = argminX∈X Eθ∗(X, y

test). Directly
solving the above minimization is again intractable, but the energy function can generally be used for
ranking. Let R denote the rank of candidate Xi for the given ytest

{R(X1) < R(X2) ⇐⇒ Eθ∗(X1, y
test) < Eθ∗(X2, y

test)} (2)
One can use either template-based or template-free method to come up with initial proposals for
ranking, as follows.

2.1R.1 Template-based Ranking (TB). Templates can be used to extract a list of proposed reactant
candidates by using templates. We use T to define the set of available templates. Recall T :=
ty → tX . Here we overload the notation to define a template operator T (·) : M 7→ X which
takes a product as input, and returns a set of candidate reactant sets. Specifically, T (·) works as
follows: enumerate all the templates with product-subgraph ty matching with the given product y
and define S(y) = {T : ty ∈ y, ∀T ∈ T }; then reconstruct the reactant candidates by instantiating
reactant-subgraphs of the matched templates R = {X : tx ∈ X, ∀T ∈ S(y)}.

2.1R.2 Template-free Ranking (TF). In this paper, template-free ranking makes proposals using
the learned structure prediction model. We use a simple autoregressive form for p(X|y), which can
draw the top K most likely samples by beam search from this distribution.

2.2 Sequence based Models

In this section, we describe several sequence-based energy function designs. We first define the
notation. Given a molecule x, we denote its SMILES representation as s(x). We use superscript
s(x)(i) to denote the character at i-th position of the SMILES string. For simplicity, we use x(i)
when possible. The SMILES representation of a molecule set X , denoted as s(X), is an ordered
concatenation of s(x) for every x in X with “.” in between. For simplicity of notation, we use X(i)

as the short form of s(X)(i) to denote the i-th position of this concatenated SMILES.
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2.2.1 Full energy-based model

We start by proposing a most flexible model that imposes the minimum restrictions on design of Eθ.
All the variants proposed in Sec 2 are special instantiations of this model.

The conditional probability of X given y is given as follows:

p(X|y) = exp (−Eθ(X, y))∑
X′∈P(M) exp (−Eθ(X ′, y))

∝ exp(−Eθ(X, y)) (3)

Here the energy function Eθ : P(M) ×M 7→ R takes a molecule and a molecule set as input,
and outputs a scalar value. P(·) represents the power set. Due to the intractability of the partition
function, we focus on the following three general ways for training.

2.2.2 Ordered sequential model

As the full energy-based model in the previous section relies on templates for training and doesn’t
explicitly exploit the dependency between positions in a sequence, one can use an ordered sequential
model, which performs forward auto-regressive factorization of the input sequence [8, 9, 18].

P (X|y) = p(X(1), X(2), . . . , X(|s(X)|)|y) = pθ(X
(1)|y)

∏|s(X)|
i=2 pθ(X

(i)|X(1:i−1), y) (4)
where conditional probability p(X(i)|X(1:i−1), y) is parameterized by transformer hθ(p, q) : S|p| ×
S|q| 7→ R|S|, and S is the vocabulary size for chemistry symbols like atoms, charges, etc.

P (X|y) = exp
(∑|s(X)|

i=1 log pθ(X
(i)|X(1:i−1), y)

)
= exp

(∑|s(X)|
i=1 log

exp(hθ(X(1:i−1),y)>e(X(i)))∑
c∈S exp(hθ(X(1:i−1),y)>e(c))

)
(5)

where e(c) is a one-hot vector with dimension c set to 1. This choice of hθ(p|q) enables efficient
computing of the denominator of Eq. (5) by outputting a vector with length equal to |S| to indicate
logits (unnormalized log probability) for each value in the vocabulary. Directly using MLE is feasible
for training this model.

2.2.3 Perturbed sequential model

In contrast to the ordered sequential model that factorizes the sequence in one direction, we adapt a
method from XLNet [19], which uses a perturbed sequential model to achieve stochastic bidirectional
factorization. In particular, the model permutes the factorization order (while maintaining position
encoding of the original order) that is used in the forward auto-regressive model.

P (X|y, z) = p(X(z1), X(z2), . . . , X(z|s(X)|)|y) =
∏|s(X)|
i=1 pθ(X

(zi)|X(z1:zi−1), y) (6)
where the permutation order z is a permutation of the original order sequence zo = [1, 2, . . . , |X|]
and zi denotes the i-th element of permutation z. Here z is treated as hidden variable.

During training, permutation order z is randomly sampled and uses the following training objective:

P (X|y) ≈ exp
(
Ez∼Z|s(x)|

[∑|X|
i=1 log pθ(X

(zi)|zi, X(z1:zi−1), y)
])

(7)

and the corresponding parameterization:

pθ(X
(zi)|zi, X(z1:zi−1)y) = log

exp
(
h(X(z1:zi−1), zi, y)

>e(Xzi)
)∑

c∈S exp
(
h(X(z1:zi−1), zi, y)>e(c)

) (8)

where zi encodes which position index in the permutation order to predict next, implemented by a
second position attention (in addition to the primary context attention).

Eq. (7) is actually a lower bound of the latent variable model, due to Jensen’s inequality. However,
we focus on this model design for simplicity of permuting order in training to avoid difficult pos-
terior inference. The benefit of such a model is that it has seen information from both directions
during training via random permutation order. During testing, we use original order zo to compute
p(X test|ytest). With the lower-bound approximation, the direct MLE is feasible for model training.

2.2.4 Bidirectional model

An alternative way to achieve bidirectional context conditioning is the denoising auto-encoding model.
We adapt bidirectional model from BERT [20] to our application. The conditional probability p(X|y)
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is factorized into product of conditional distributions of one single random variable on the others.

p(X|y) ≈ exp
(∑|s(X)|

i=1 log pθ(X
(i)|X¬i, y)

)
= exp

(∑|s(X)|
i log

exp(hθ(X¬i,y)>~e(X(i)))∑
c∈S exp(hθ(X¬i,y)>~e(c))

)
(9)

where h and e are the same as in Eq. (5). As presented in [21], although the model is similar to MRF
[22], the marginal of each dimension in Eq. (9) does not have a simple form as in BERT training
objective. This may result in mismatch between model and learning objective.

2.2.5 Dual model

Retrosynthesis and reaction prediction are a pair of mutual reversible processes that factorize the
joint distribution in different orders, where reaction prediction is “forward direction” – p(y|X))
and retrosynthesis is the “backward direction” – p(X|y). With additional prior modeling, the joint
probability p(X, y) factorizes to either p(X|y)p(y) or p(y|X)p(X). Based on this, we propose a
training framework, which leverages the duality of the forward and backward directions, and performs
consistent training between the two directions to bridge the divergence. In this case, the energy based
model is defined as:

p(X|y) ∝ exp
(
log p(X) + log p(y|X) + log p(X|y)

)
(10)

The duality of reversible processes has also demonstrated its advantage in other applications [23–26].
We here provide a different learning method that is more practical for retrosynthesis task. Specifically,
our consistent training is achieved by minimizing the dual loss, where the dual constrains in the equa-
tion below are imposed to penalize KL divergence of the two directions, i.e., KL(backward|forward).
For simplicity we fix the backward probability, and therefore entropy H(backward) is dropped.

`dual = −
(
Ê[log p(X) + log p(y|X)]︸ ︷︷ ︸

forward direction

+βÊyEX|y[log p(X) + log p(y|X)]︸ ︷︷ ︸
dual constraint

+ Ê[log p(X|y)]︸ ︷︷ ︸
backward direction

)
where Ê[·] indicates expectation of empirical data distribution p̂(X, y). As each term in above equa-
tion only involves with likelihood evaluation, we model p(X|y), p(X) and p(y|X) as autoregressive
models for simplicity. With such design, sampling from p(X|y) is also tractable for dual constraint
optimization, with the estimation of Êy[·] using empirical data.

3 Experiments

We first present the evaluation of our best EBM variant against existing methods for both template-
based and template-free approaches in Table 1, then we provide comprehensive study on different
variants of sequence-based EBMs in Table 2. We provide Template free evaluation in Table 3.

Table 1: Top K exact match accuracy of existing methods

Category Model Reaction type unknown Reaction type known

top1 top3 top5 top10 top1 top3 top5 top10

TB

retrosim [27] 37.3 54.7 63.3 74.1 52.9 73.8 81.2 88.1
NeuralSym [28] 44.4 65.3 72.4 78.9 55.3 76.0 81.4 85.1
GLN [13] 52.5 69.0 75.6 83.7 64.2 79.1 85.2 90.0
Dual-TB (Ours) 55.2 74.6 80.5 86.9 67.7 84.8 88.9 92.0

Semi-TB G2Gs [14] 48.9 67.6 72.5 75.5 61.0 81.3 86.0 88.7

TF
LSTM [10] - - - - 37.4 52.4 57.0 61.7
Transformer [12] 43.7 60.0 65.2 68.7 59.0 74.8 78.1 81.1
Dual-TF (Ours) 53.3 69.7 73.0 75.0 65.7 81.9 84.7 85.9

*Dual-TB/TF: Dual model with template-based or -free ranking.
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Appendix

Table 2: Top K accuracy of sequence variants

Reaction type unknown Reaction type known

Dataset Models Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

USPTO 50k

Full model 39.5 63.5 73.0 83.8 55.0 79.9 86.3 92.0
Ordered 47.0 67.4 75.4 83.1 60.9 80.9 85.8 90.2
Perturbed 42.9 58.7 63.9 69.6 56.6 73.6 77.2 81.6
Bidirectional 16.9 34.4 45.6 61.1 31.4 57.0 69.8 81.3
Dual 48.4 69.1 77.0 84.4 61.7 81.5 86.9 91.1

Ordered 54.2 72.0 77.7 84.2 66.4 82.9 87.4 91.0
Augmented Perturbed 47.3 64.6 70.4 75.8 64.2 79.8 83.3 86.4
USPTO 50k Bidirectional 23.5 43.7 54.3 69.5 41.9 66.3 75.6 84.6

Dual 55.2 74.6 80.5 86.9 67.7 84.8 88.9 92.0

Table 3: Template-free: Translation Proposal and Dual Ranking

Type Proposal Re-rank

Proposal model Top 1 Top 5 Top 10 Top 50 Top 100 Rank model Top 1 Top 3 Top 5 Top 10

No
Ordered on UPSPTO 44.4 64.9 69.9 77.2 78.0 Dual trained on

Aug USPTO
53.6 70.7 74.6 77.0

Ordered on Aug USPTO 53.2 54.7 55.6 60.5 60.5 54.5 60.0 60.4 60.5

- - - - - - SOTA (SCROP [12]) 43.7 60.0 65.2 68.7

Yes
Ordered on USPTO 56.0 76.1 79.7 85.2 86.4 Dual trained on

Aug USPTO
65.7 81.9 84.7 85.9

Ordered on Aug USPTO 64.7 66.5 67.3 69.7 75.7 66.2 75.1 75.6 75.7

- - - - - - SOTA (SCROP [12]) 59.0 74.8 78.1 81.1

EBM framework

Representation

N

S

N
N

O

Cc1ccc(-n2c(SC
c3ccncc3)nc3cc
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Figure 2: EBM framework for retrosynthesis. Given the product as input, works as follows: The
product is the EBM framework (1) represents it as SMILES or a graph, (2) designs and trains the
energy function Eθ, (3) ranks reactant candidates with the trained energy score Eθ∗ , and (4) identifies
the top K reactant candidates. The best candidate has the lowest energy score (denoted by a star).
The list of reactant candidates is obtained via templates or directly from the trained model.

Dual model framework
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Case study

Here we provide another case study showing with Dual model ranking (Sec 2.2.5), the accuracy
improves upon translation proposal.
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