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Abstract

While neural networks (NNs) achieve state-of-the-art accuracy for many tasks in
quantitative structure-activity relationship (QSAR) modeling, they can struggle
with generalization to out-of-domain examples, poor sample efficiency, and un-
calibrated predictions for drug discovery. In this paper, we leverage advances in
evidential deep learning to demonstrate a new approach to uncertainty quantifica-
tion for molecular structure-property regression at no additional computational cost
for both message passing and atomistic NNs on the QM9 benchmark dataset. We
demonstrate that evidential uncertainties enable (1) calibrated predictions where
uncertainty correlates with error, (2) sample-efficient training through uncertainty-
guided active learning, and (3) improved experimental validation rates in a ret-
rospective virtual screening campaign. Our results suggest that evidential deep
learning can provide an efficient means of uncertainty quantification useful for
molecular property prediction, discovery, and design tasks.

1 Introduction

Because neural networks (NNs) are susceptible to failure modes in out-of-distribution regimes, it is
critical to understand their predictive confidence, particularly for drug discovery and virtual screening
applications where model predictions can guide time- and resource-intensive experimentation. Meth-
ods for uncertainty quantification (UQ) can help address these needs and facilitate robust application
of neural models across a variety of tasks in the chemical sciences.

Existing approaches to epistemic (model) UQ for cheminformatics tasks include sampling based
methods, such as ensembling and Monte Carlo (MC) dropout, and Bayesian neural networks [13} 9]
However, these approaches only generate approximations to the underlying uncertainty functions via
stochastic sampling, yet incur significant computational costs and runtimes, hindering their application
to iterative active learning strategies and their deployment in resource constrained settings.

In contrast, NNs can be trained to predict the parameters of the underlying probability distribution and
obtain closed-form solutions of aleatoric (data) uncertainty, without sampling [12} 2} [7|[8]]. Evidential
deep learning [|16, |1] frames learning as an evidence acquisition process to infer the parameters of an
evidential distribution and simultaneously model both epistemic and aleatoric uncertainty [4].

In summary, the contributions of this work are as follows (Fig.[I):

1. Demonstration of evidential deep learning as a new approach to UQ for molecular structure-
property prediction with well-calibrated uncertainties;
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Figure 1: Evidential uncertainty for molecular prediction and discovery. A. Evidential direct message
passing or atomistic neural networks learn molecular representations and predict target properties as well as the
parameters of an underlying evidential distribution, capturing the evidence in support of each prediction and
enabling uncertainty estimation. B. Uncertainties are applied during learning (I) to increase sample efficiency
and during deployment (II) to discover high confidence candidates with increased empirical success rates.

2. Validation of its relevance to (a) active learning for sample efficient model training and (b)
prioritization of candidates in virtual screening to improve validation rates.

2 Related Work

While a plethora of distance-based and non-parametric methods for UQ have been developed [10,[19]],
ensembling [11] and MC-dropout [6] are still accepted as state of the art for epistemic UQ for
molecular NNs, due in part to their model-agnostic nature and ease of implementation [[13} 15, [17].
However, recent analyses [9,113]] have revealed an overwhelming lack of consensus on top performing
aleatoric and epistemic UQ methods across molecular property prediction datasets. Most relevant to
the applications considered in this work, the atomistic network ANI for atomic energies was improved
by repeated acquisition of new training data via ensemble-based query by committee, incurring the
cost of retraining multiple models at each acquisition step [17].

3 Methods and Datasets

Evidential deep learning for regression. Evidential models [1. [L6] train the network to directly
output the parameters of the underlying probability distribution. For continuous (regression) targets,
x, these evidential distributions can be parameterized with a Normal Inverse-Gamma (NIG) over the
lower order likelihood parameters: p(u, 2|y, A, a, 3). The network, which outputs the four NIG
parameters (m = {~, \, «, 3}), is trained using a multi-objective loss which jointly aims to maximize
model fit, log p(x|m), and minimize evidence on errors. Full training details are in the Appendix.

Network architectures. To show its broad applicability in molecular modeling, we integrate eviden-
tial regression into a state-of-the-art D-MPNN model, Chemprop [22], and the end-to-end atomistic
NN, SchNet [[15]], to show performance on 2D graphs and 3D conformers, respectively. The D-MPNN
is implemented with default Chemprop parameters (i.e., hidden dimension of 300, 3 layers, and no
dropout) [22]. SchNet is implemented with parameters of available pretrained schnetpack models
(i.e., 128 features, 50 Gaussians, a cosine cutoff of 10 and 6 interaction layers) [14]. Final layers
of both models infer a single evidential distribution for each task, with each parameterized by four
outputs (e.g., predicting 12 tasks uses 48 outputs).

Datasets. For benchmarking and active learning D-MPNN experiments, we predict all 12 output
tasks of the QM9 dataset containing computer-generated quantum mechanical properties [21]. The
single task of total formation energy, Uy [14], is used for SchNet. For virtual screening experiments,
models are trained on small molecules and their in vitro growth inhibitory activity against E. coli [18]].
Models were evaluated on the Drug Repurposing Hub library [3], and predictions were compared to
empirically determined activities for a subset of these molecules [[18].



4 Results

4.1 Uncertainty calibration and benchmarking

We first sought to demonstrate that our ev-
idential learning algorithm could yield well-
calibrated uncertainties on molecular and atom-
istic property prediction, such that the lowest
uncertainty samples have the lowest error. We
compared to Monte Carlo dropout and ensem-
bling (both with n = 5 samples) as baselines
for UQ and utilized both D-MPNN and SchNet
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gure 2: Calibration of evidential uncertainties. Av-
age test set RMSE and MAE when considering only a

subset of the most confident predictions for D-MPNN
(A) and SchNet (B). Mean + s.d. over n = 5 runs.
Dropout is used during training only with d = 0.1. Cut-
offs are computed every 30 datapoints, exclusively.
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In the 2D setting (D-MPNN), evidential uncertainty outperformed ensemble and dropout based
methods in terms of the steepness of MAE decrease with increasing confidence (Fig.[2JA). Despite
showing decreased performance on the RMSE metric, evidential uncertainty demonstrated a steeper
decline in error as a function of confidence and had lower RMSE than both dropout and ensembles at

high confidence percentiles (Fig.[2JA). In the 3D set
ensemble model performance and displayed uncalib

ting (SchNet), evidential learning did not match
rated confidence for the 40% highest confidence

predictions for the RMSE metric (Fig. 2B). While RMSE is less calibrated than the ensembling

approach, MAE still declines as a function of confi

dence, yielding uncertainties without increased

compute cost or model architecture changes (e.g. dropout) (Fig.[2B).

4.2 Active learning using evidential uncertainti

One application of UQ in a downstream learn-
ing task is to guide the training process through
active learning, where data is iteratively added
to the training dataset according to an acquisi-
tion function quantifying its utility; here, we use
the estimated uncertainty as the acquisition func-
tion. We evaluate the efficacy of explorative active
learning for each of the dropout, ensembling, and
evidential learning UQ methods described above.
Data can be acquired either greedily or sampled
stochastically.

Active learning trials were initialized with a ran-
dom 10% or 15% subset of the training data. At
each step, the uncertainty was evaluated across
the remainder of the training data, and used to it-
eratively add new samples for the next round of
training. Model error was evaluated on a held out
test set. For all evaluations, random sample se-
lection served as a baseline for each uncertainty
quantification method considered.
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Figure 3: Evidential active learning on QM9. Per-
formance of explorative versus uniform (random) sam-
pling for D-MPNN (A) and SchNet (B). (C) Effect
of different acquisition strategies (explorative, score,
random) for D-MPNN. (D) t-SNE visualization of
actively and randomly selected training samples.



For both the D-MPNN and SchNet, we found that active selection based on evidential uncertainties
improved sample efficiency by 36% and 53% over random acquisition, respectively (Fig. B]A, B).
Further, for the D-MPNN, acquisition using evidential uncertainties resulted in increased data
efficiency relative to dropout-based selection; as an example, to achieve an RMSE of 6.8, evidence-
guided models required an average of 26% of the entire training data compared to 62% for dropout-
guided models (Fig.3]A). For the D-MPNN, uncertainties derived from model ensembling resulted
in the greatest improvement over random selection; however, ensembling requires training multiple
independent models at each active learning step and thus carries a significant computational expense.
In contrast, evidential learning enables resource efficient uncertainty estimation at single-model cost
and still achieves increased training efficiency compared to random acquisition.

We next considered whether data acquisition would be improved by access to an oracle that measures
absolute error on held out training data as the acquisition function score. Score-based strategies did
not improve D-MPNN training relative to random selection (Fig. [3C). Furthermore, this difference
was consistent for both stochastic sampling and greedy selection of the acquisition function. These
results highlight that principled uncertainty estimates can be more informative than predictive error
or random selection in identifying data that add new knowledge to the model (Fig. [3D).

4.3 Discovery of high confidence drug candidates via retrospective virtual screening

Lastly, we investigated the potential for evidential deep learning to discover high confidence drug
candidates in a retrospective virtual screening campaign. We trained a D-MPNN with the evidential
loss on a recent antibiotic discovery dataset of 2,335 small molecules and their in vitro growth
inhibition against E. coli (measured as ODgqg) [18]]. Training details are available in the Appendix.
The resulting model achieved robust performance on a held-out subset of this dataset (Fig. @A).

We applied the trained model to the Broad Drug Repurposing Hub [3] and visualized the struc-
tural overlap between these test molecules and the training set as well as their estimated evidential
uncertainties (Fig. @B). Comparing predicted antibacterial activity to evidential uncertainty demon-
strated that predicted active molecules (lower predicted ODgq) trended towards higher uncertainties
(Fig.[[C), as expected, due to the stark imbalance and skewness of the training set (Fig. @jA).

We utilized evidential uncertainties to prioritize high confidence candidate antibiotics, with the goal
of nominating compound sets with high experimental hit rates. In line with the approach outlined
in [18], the top k Drug Repurposing Hub molecules were selected based on their predicted activity.
Molecules with confidence values below the p*”* percentile within this set were removed using varying
thresholds, p. Experimental hit rates (true ODggo < 0.2) for these model-nominated compounds were
estimated using the subset of candidates for which empirically determined antibiotic activity was
reported [18]] (Fig.[@D). This analysis revealed that augmenting NN predictions with confidence-based
filtering could increase the validation rate relative to that of the unfiltered set of k¥ = 50 candidates.
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Figure 4: Uncertainty guided nomination of candidate antibiotics. A. Performance of evidential D-MPNN
after training to predict E. coli growth inhibition. B. t-SNE visualization of training set (orange) and the Broad
library, colored by predicted evidential uncertainties (blue). C. Predicted growth inhibition of E. coli against
estimated uncertainty for compounds in Broad library. D. Application of confidence filters to prioritize sets of
antibiotic candidates with high experimental hit rates. Mean + s.d., n = 5.



5 Conclusion

We demonstrate how recently developed evidential deep learning methods can be used for compu-
tationally inexpensive UQ in cheminformatics. By benchmarking on two separate architectures for
small molecule 2D graphs and 3D conformers, we showcase the modularity of evidential UQ. These
uncertainties prove useful in both active learning of quantum mechanical surrogate models and the
discovery of novel antibiotic compounds, supporting the generalizability and promise of evidential
deep learning for molecular machine learning.
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S1 Supplementary Methods

S1.1 Evidential learning

We consider learning problems with continuous targets, where the observed targets, * =
{z1,...,2,}, are drawn i.i.d. from a Gaussian distribution with unknown mean and variance
(u,0?), which we seek to probabilistically estimate. We model this by placing a conjugate prior
distribution over these two likelihood parameters. Specifically, we place a Gaussian prior on our
unknown mean, p(u), and an Inverse-Gamma prior on our unknown variance, p(o?). Our aim is to
learn the joint posterior distribution, referred to as the evidential distribution, through observation of
our targets p(u, o |m; x):

2 B 1\ 28 + v(y — p)?
P(ﬂ\?_/\%vaaaﬂ) = W <02) eXP{QUQ}~ (SDhH

Practically, this amounts to training a neural network to infer the four model parameters m =
{7, v, a, B} defining the evidential distribution for any given input. For a given realization of m, we
have a closed form equation for the distribution’s density function (Eq.[ST]|to compute the first and
second order moments (i.e., the prediction and uncertainty) directly:

Elul =7,  El® =25,  Varlu = 5. (S2)
~ — —_—
prediction aleatoric epistemic

The loss function for evidential regression networks is a multi-objective function that simultaneously
aims to maximize model evidence (Lyy 1) and minimize incorrect evidence on errors (Lrgg). The
model evidence, also commonly referred to as the marginal likelihood, p(x, m), can be computed
through a double integral marginalizing over both likelihood parameters, (u, 02). In the case of the
NIG distribution, this marginalization reduces to:

p(e|m) = St <w;% %7 2a> . (83)

where St (.T; st agt, vSt) is the Student-t distribution evaluated at x with location pug;, scale agt, and
vgy degrees of freedom.

The total loss, £(x), is computed as:

L(x) = Lai(x) + A Lreg () (S4)
= logp(z|m) + A- ||z — 7|, - © (S5)
where ) is a regularization coefficient, || - ||, is a p-norm, and ® = 2v + « is the cumulative evidence

of the predicted distribution. For additional details on the evidential loss please refer to [?].

S1.2 Experimental details
S1.2.1 Training hyperparameters

2D D-MPNN models were trained using the Adam optimizer and Noam scheduler as detailed in [20]]
and implemented with D-MPNN’s in [22]. We use the default Chemprop learning rate parameters,
specifically a batch size of 50, 2.0 warmup epochs, an initial learning rate of le — 4, max learning
rate of 1e — 3, and final learning rate of 1e — 4 after decay.

For benchmarking the 3D SchNet models, we use this same Noam scheduler, increasing the batch
size to 100 for consistency with [14]. These benchmarking parameters are summarized in Table [ST]

For active learning experiments with 3D SchNet models, we found instability early in the sampling
procedure and find empirically better performance with a maximum learning rate, = 2e — 4. In all
other active learning experiments with the D-MPNN, we maintain the training hyperparameters used
in benchmarking.



Table S1
Hyperparameter  Value |

Batch size (50, 100)
Optimizer Adam

Initial 7 le—4

Max n (le—3, 2e—4)
Final n le—4

Train, val, test split  80-10-10
Epochs 100

Warmup epochs 2

Table S2: Hyperparameter selection for D-MPNN and SchNet model training. Where differences exist between
the two models, both hyperparameters are provided in a tuple.

S1.2.2 Active learning sampling strategies

In this work we evaluated three different forms of acquisition function. The primary baseline is the
random (uniform) sampling selection, wherein new data points are selected from the data corpus at
random with a uniform prior. Next, we evaluate acquisition functions computed according to the
estimated uncertainty of making a prediction with that data point. Points with larger uncertainty will
have a larger acquisition score and vice versa. Finally, for score-based acquisition we assume access
to an oracle labeler to inform the score or error of the data point. Points with larger error will have
larger acquisition likelihood. The score baseline is a non-realistic baseline, but provides a valuable
comparison as it demonstrates the concrete benefit of leveraging uncertainty, especially where we do
not have ground truth labels as in the active learning domain.

Given an acquisition function we also provide comparison with two different sampling strategies:
(1) greedy and (2) stochastic. In a greedy strategy, the data point with the top acquisition score
will be sampled deterministically. Alternatively, we can use the acquisition function to define a
categorical distribution over each data point weighted accordingly. A new data point is then selected
by stochastically drawing a random choice from this categorical distribution.

S1.3 Retrospective virtual screening

While the original work [[18] binarized the antibiotic dataset and trained a classification model for
predicting activity, here we reconsider this as a regression task and learn on the raw continuous targets
to predict each compound’s growth inhibition of E. coli, measured as ODgg (lower, more growth
inhibitory).

Given the limited quantity of data available, we augmented representations learned by the D-MPNN
with 200 molecular features computed in RDKit as in the original analysis [18]. We train a D-MPNN
model to predict evidential uncertainties over ODggq using a 80-10-10 split size and the same learning
rate parameters used in benchmarking.

After training models to predict evidential uncertainties on the original 2, 335 molecule dataset, we
apply models to the Broad Drug Repurposing Hub [3] and select the top-k compounds with the
highest predicted inhibition. In the original analysis, the top £ = 99 predicted molecules were
empirically tested for hits (ODggg < 0.2) to compute ground truth inhibition values for evaluation
[18]. We select the top k£ = 50 to maximize overlap with the originally selected 99 molecules. Given
the top predictions we apply an additional round of filtering using the uncertainties of each molecule.
For a set percentile cutoff threshold, p, we remove any of the k predictions which fall below the
bottom p-percentile of uncertainty. In other words, we keep only the predicted molecules which
exhibit the highest relative confidence. We compute the empirical hit rate of the remaining molecules
based on overlap with the original experimentation [18]. We plot the empirical hit rate as a function
of the confidence cutoff (p) across our top & predicted molecules.
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Figure S1: Task-specific D-MPNN uncertainty benchmarks. D-MPNN average test set MAE at
different uncertainty cutoffs, separated by task. Mean =+ s.d. over n = 5.
Task = alpha Task = cv Task = g298 Task = gap
5
0.008 | |
0.006
0.004
0.002
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Task = h298 Task = homo Task = lumo Task = mu
5 0.006
0.005
4 0.005
W 3 0.004 0.004 Me.thod
s —— evidence
o« 2 0.003 0.003 —— dropout
—— ensemble
1 0.002
0.002
o 0.001
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Task =r2 Task = u0 Task = u298 Task = zpve
0.0025 | |
=
—
0.0020 — 4
le
0.0015
0.0010
0.0005
0.0000
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 .0 0.5 1.0
Confidence Percentile Confidence Percentile Confidence Percentile Confidence Percentile

Figure S2: Task-specific D-MPNN uncertainty benchmarks. D-MPNN average test set RMSE at
different uncertainty cutoffs, separated by task. Mean + s.d. over n = 5.
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