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Abstract

Molecular simulations use statistical mechanics at the atomistic scale to enable
both the elucidation of fundamental mechanisms and the engineering of matter
for desired tasks. Non-quantized molecular behavior is typically simulated with
differential equations parameterized by a Hamiltonian, or energy function. The
Hamiltonian describes the state of the system and its interactions with the envi-
ronment. In order to derive predictive microscopic models, one wishes to infer
a molecular Hamiltonian from macroscopic quantities. From the perspective of
engineering, one wishes to control the Hamiltonian to achieve desired macroscopic
structures or simulation outcomes as in self-assembly and quantum control. In both
cases, the goal is to modify the Hamiltonian such that bulk properties of the simu-
lated system match a given target. We demonstrate how this can be achieved using
differentiable simulations where bulk target observables and simulation outcomes
can be analytically differentiated with respect to Hamiltonians. Our work opens
up new routes for parameterizing Hamiltonians to infer macroscopic models and
develops control protocols

1 Introduction

At the atomic level, physical processes are governed by differential equations containing many
degrees of freedom. Macroscopic phenomena in matter emerge from microscopic interactions that
can be simulated through numerically integrating the equations of motion. In classical simulations,
these equations of motion are derived from a Hamiltonian function. In quantum simulations, they are
derived from a Hamiltonian operator. Examples of microscopic quantities emerging from simulations
are time series of positions, velocities, and forces on atoms and molecules. From these, a rich family

Machine Learning for Molecules Workshop at NeurIPS 2020. https://ml4molecules.github.io

https://ml4molecules.github.io


of macroscopic observables can be calculated to describe the configurational and temporal correlation
functions of atoms.

Classically, simulating the positions of points that preserves energy requires integrating the Hamilto-
nian equations of motions:

dpi
dt

= −∂H
∂qi

dqi
dt

=
∂H

∂pi
, (1)

where pi and qi are the respective momentum and position of the ith particle. H is the Hamiltonian
of the systems; for conservative systems, it is given by the sum of kinetic energy and the potential
energy,

H(p,q) = U(q) +

N∑
i

p2i
2mi

, (2)

where boldface denotes the set of quantities for all particles, U(q) is the potential energy and
p2i /(2mi) is the kinetic energy of the ith particle.

Simulating an entire system containing all degrees of freedom is computationally intractable. Typi-
cally one is interested in a small subset of a system, such as a molecule or protein, and concerned
only with the influence of the environment on the system, but not the details of the environment
itself. For this reason, one usually incorporates an environment Hamiltonian Hb with coarse-grained
macroscopic variables of interest into the original Hamiltonian: Htot = H +Hb. The inclusion of
Hb is important in simulating systems under certain thermodynamic conditions. For example, the
crystallization and melting of water occur under constant pressure conditions. These conditions are
imposed by the environment, which must therefore be incorporated into Hb. The environment, and
therefore Hb, can also be explicitly controlled and optimized in an experiment. For example, Hb can
represent an external laser that is varied to control chemical reaction dynamics.

Recent advances in differentiable solvers have shown that differentiable simulations may be performed,
in which the result of a simulation may be analytically differentiated with respect to its inputs
(1; 2; 3; 4; 5; 6). Our paper demonstrates the use of differentiable simulations in the context
of molecular simulation. We show that a Hamiltonian can be learned such that the macroscopic
observables computed through simulation trajectory to match a given target. This is done through
automatic differentiation of the macroscopic observables computed from simulation trajectory with
respect to a wide class of functional forms for the energy function including Graph Neural Networks
(GNN). We show that the same principles can be used to control the system Hamiltonian to force the
system towards a target state.

2 Differentiable Molecular Simulations with Adjoint Sensitivity method

To be able to differentiate molecular simulations to reach a control target, we adopt the reverse-mode
automatic differentiation method from Chen et al., which uses adjoint sensitivity methods (7; 1).
Taking derivatives requires computation of the adjoint state a(t) = dL/d(p(t), q(t)). Evaluating the
loss requires the reverse-time integration of the vector-Jacobian product:

dL

dθ
=

∫ ti

ti+1

a(t)
df(q(t), p(t), θ)

dθ
dt, (3)

where f(q, p, t) represents the Hamiltonian ODE defined in Eq. 1. The reverse-mode automatic
differentiation computes the gradient through the adjoint states without backpropagating through
the fowardpass computations in the ODE solver. This has the advantage of linear memory cost as
function of simulation steps because the alogrithm does not save intermediate system states but
instead integrating backward in time to compute gradients of the parameters and other system state
variables. The ability to output positions and momenta at individual timesteps allow one to directly
compute observables and correlation functions from a trajectory. For the classical MD simulations we
applied velocity verlet for the forward computation of molecular trajectory. We apply the mid-point
integration for the background call to compute gradients of GNN parameters. For the optimization of
the two-state quantum dynamics, we use the fourth order Runge Kutta for both of the forward and
backward computation.
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3 Control Protocol for Molecular Quantum Dynamics

Figure 1: A We perform continuous model training during the simulations to bias a harmonic polymer
chain toward a targeted helix shape. This is done by training a bias Hamiltonian parameterized by a
GNN. We run the simulations for 4000 steps, and the loss is computed and differentiated to update
GNN weights every 40 simulation steps. B Controlled isomerization of the model retinal Hamiltonian
with a time-dependent electric field. The model consists of two electronic states, denoted with blue
and red, a vibrational mode x, and a torsional mode φ. We show that the time-averaged quantum
yield increases as a function of training epoch with differentiable control.

We use the model introduced in Ref. (8) for the retinal chromophore. The model Hamiltonian consists
of two diabatic electronic states, a single torisonal mode φ for the isomerizing double bond, and a
single stretching mode x (see Fig. 1B). Details of the model, the construction of the Hamiltonian and
the operators of interest can be found in Refs. (8; 9; 10).

The total Hamiltonian of the system and the control field is given by

Ĥ(t) = ĤS + Ĥb = ĤS − µ̂E(t), (4)

where ĤS is the system Hamiltonian, Ĥb is the control Hamiltonian, µ̂ is the dipole operator, and
E(t) is the electric field. The system wave function evolves under the Schrödinger equation,

∂

∂t
|ψ(t)〉 = −iĤ(t) |ψ(t)〉 , (5)

where |ψ(t)〉 is the wave function. Computationally, the wave function is represented as a vector
and the Hamiltonian as a matrix, and the system dynamics are obtained by solving Eq. (5). Physical
quantities are obtained as expectation values of operators, A(t) = 〈ψ(t)|Â|ψ(t)〉, where A(t) is an
observable and Â is the corresponding operator.

The quantity to be optimized is the quantum yield, i.e. the efficiency of isomerization Y (the higher
the better; further details are provided in the Appendix). During simulations, we backpropagate
through the simulation trajectory to optimize both the magnitude and phase of the temporal electric
field. The numerical results are shown in Fig. 1 B. The quantum yield begins at approximately 0.6,
and after 50 epochs reaches 0.8 as the electric field is improved. These results show that differentiable
simulations can be used to learn control protocols for electric fields driven isomerization.

4 Controlling Molecular Dynamics

We trained a GNN to represent Hb, to bias a linear chain with a harmonic Hamiltonian into a helix
fold (see Fig. 1). The polymer simulations are performed at a constant temperature using the
Nose-Hoover Chain integrator described above and in the Appendix. We back-propagate through
the simulations during the course of the simulations to continuously update the GNN so that the
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loss function L =
∑observables

i (φi(q(t1))− φi(qhelix))2 is minimized where the set of functions φi
include structural variables of the polymer chain: bond distances, angles and dihedrals angles.

5 Learning from Observables

We demonstrate an example of fitting pair correlations for liquid water. Pair correlation functions
characterize structural and thermodynamic properties of condensed phase systems (11). We demon-
strate that by differentiating through the simulation trajectories, one can actively modify parameters
to match a target distributions function. To make the distribution function our differentiable target,
we implement a differentiable histogram to approximate the typical non-differentiable histogram
operation. This is done by summing over pair distances expanded in a basis of Gaussians (“Gaussian
smearing"), followed by normalization to ensure that the histogram integration yields the total number
of pair distances (see Appendix). We use a GNN to fit a Coarse-Grained Potential which reproduces
the experimental oxygen-oxygen distribution (goo) from Ref. [(12)]. For each epoch, we first run
simulations and backpropagate to optimize GNN weights, a potential is learned to best reproduce
goo. We use the symmetric Jensen-Shannon entropy to quantify the difference between the simulated
distribution function and experimental distribution, adn as the loss function for backpropatation.

Figure 2: A. Computational workflow to fit Oxygen-Oxygen pair distribution functions for water at
298K and 1 atm. We use a Graph Neural Networks to parameterize the force fields. For each training
epoch, we compute the pair distribution functions from simulated trajectories. We back-propagate
the mean square loss between simulated and target pair distribution functions to update the GNN
parameters. B. Change of simulated goo during training. C. The training loss curve. D. goo simulated
by the converged model.

6 Conclusions

In this work we proposed a framework for training molecular simulations based on macroscopic
quantities to develop learning and control protocols. Our method is based on model learning through
simulation time feedback from bulk observables. Our method also opens up new possibilities for
designing control protocols for equilibrium and non-equilibrium simulations by incorporating bias
Hamiltonians. This work can be extended to the simulation of other types of molecular systems with
different thermodynamic boundary conditions and different control scenarios.

7 Related Work

Several works have incorporated physics-based simulations to control and infer movements of
mechanical objects. These are done by incorporating inductive biases that obey Hamiltonian dynamics
(13; 14). Many works also focus on performing model control over dynamical systems (3; 15; 16).
Differentiable simulations with automatic differentiation have also been utilized in constructing
models from data in many differential equation settings like computational fluid dynamics (17),
physics simulations (18; 19; 4), quantum chemistry (20), protein simulations (21) and normalizing
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flows (22). Much progress has been made in developing differentiable frameworks for molecular
dynamics (23), PDEs (24; 25; 26; 2) and ODEs (1).
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8 Appendix

8.1 Nose-Hover Chain Integrator

Here we describe the Nose-Hover Chain (27; 28), the constant temperature integrator algorithm
mentioned in the paper. We applied this integrator to the coarse-grained water and polymer examples
to simulate systems with constant temperature control. Here we define the variables used in the
integrator:
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• N : number of particles
• K: number of virtual variables used in the chain
• i: index for individual degrees of freedom, i : 1, ..., 3N

• j: index for virtual variables in the chain j : 1, ...,K

• pi: momentum for each degree of freedom i

• qi: position for each degree of freedom i

• mi: mass for each particle in the simulation
• Qj : coupling strengths to the heat baths variable in the chain
• ηj : virtual momenta

The coupled equations of motion are:

dpi
dt

= −∂H
∂qi

,

dqi
dt

=
∂H

∂pi
− pi

η1
Q1

dη1
dt

=
( 3N∑

i

p2i
2mi

−NkBT
)
− η1

η2
Q2

...

dηj
dt

=
( ηj−1
Qj−1

− kBT
)
− ηj

ηj+1

Qj+1

...

dηK
dt

=
( ηj−1
Qj−1

− kBT
)

(6)

The Nose Hover Chain integrator performs effective temperature control, and the integrated dynamics
sample the Boltzmann distribution. The integrator is deterministic and time-reversible. The control of
other thermodynamic variables can be realized with other integrator protocols, such as the Rahman-
Parrinelo method to maintain constant pressure (29).

8.2 More on two-state Isomerization

Here we provide details for the two-state isomerization example in this section. The control incident
electric field is initialized with a Gaussian form.

E(t) = E0 cos(ω0(t− tp)) exp(−(t− tp)2/τ2), (7)

where E0 is the amplitude of the field, ω0 is the center frequency, tp is the pulse arrival time, and
τ is the pulse duration. The pulse duration is set to τ = 10 fs, the center frequency to ω0 = 2.4
eV, and the arrival time to tp = 3τ = 30 fs. The short pulse duration is chosen to approximate a
delta-function, the arrival time to ensure that the pulse is completely contained within the simulation,
and the center frequency to approximately match the electronic excitation energy. The field amplitude
is chosen as E0 = 1 in atomic units, since, as explained below, the quantum yield is normalized with
respect to excited state population, and hence to the field intensity.

The quantity to be optimized is the quantum yield, i.e. the efficiency of isomerization. The cis
projection operator is denoted as P̂c and the trans projection operator as P̂T . In position space, the
operators are given by P̂c = θ(π/2 − |φ|) and P̂T = θ(|φ| − π/2), where θ is the Heaviside step
function and φ the molecular rotation coordinate. The quantum yield is then

Y (t) =
〈P̂ 11

T (t)〉
〈P̂ 11

T (t) + P̂ 00
C (t)〉 − pg(t)

, (8)

where 〈...〉 = 〈ψ|...|ψ〉 denotes a quantum expectation value, P̂ 11
T = P̂T |ψe1〉 〈ψe1 | is the projection

of P̂T onto the diabatic excited electronic state, P̂ 00
C = P̂C |ψe0〉 〈ψe0 | projects onto the ground
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diabatic state, and pg is the ground state population. Subtraction of pg ensures that any population
remaining in the ground state does not contribute to the quantum yield. Since the quantum yield
depends on time, we optimize its average over a time period after the pulse is over:

〈Y (t)〉t =
1

T

∫ t0+T

t0

dt Y (t), (9)

where 〈...〉t denotes a time average. Here, t0 is the time at which the yield is first recorded, and T is
the averaging time. We set t0 = 0.5 ps and T = 1.5 ps.

The dynamics are discretized with a timestep of ∆t = 0.05 fs. The electric field is discretized with a
time step of 5∆t = 0.25 fs. This is done to limit the timescale over which the electric field can vary.

To avoid the use of complex numbers in backpropagation, the real and imaginary parts of the wave
function are stored as separate vectors |ψR(t)〉 and |ψI(t)〉, respectively. They then follow the
coupled equations of motion

∂

∂t
|ψR(t)〉 = Ĥ |ψI(t)〉 ,

∂

∂t
|ψI(t)〉 = −Ĥ |ψR(t)〉 . (10)

The expectation value of an operator Â is given by

〈ψ(t)|Â|ψ(t)〉 = 〈ψR(t)|Â|ψR(t)〉+ 〈ψI(t)|Â|ψI(t)〉
+ i (〈ψR(t)|Â|ψI(t)〉 − 〈ψI(t)|Â|ψR(t)〉 . (11)

8.3 Graph Neural Networks

The model is based on graph convolution, which has achieved state-of-the-art predictive performance
for chemical properties and molecular energies/forces (30? ; 31; 32; 33). In our work, we utilized the
SchNet (? ) architecture to learn the control Hamiltonian. The model consists of a message step and
update step to systematically gather information from neighboring atoms. A 3D molecular graph is
used, and the existence of a connection between atoms is decided by a fixed distance cutoff. Defining
v as the index for each atom and its neighbors as N(v), the graph convolutions process iteratively
updates the atomic embedding hv by aggregating “messages" from their connected atoms v and their
edge features euv . This update process is summarized by

htv = ht−1v +
∑

u∈N(v)

Messaget(hu, euv). (12)

By performing this operation several times, a many-body correlation function can be constructed
to represent the potential energy surface of a molecular system. In the case of SchNet, the update
function is simply a summation over the atomic embeddings. The message function is parameterized
by the following equations:

Messaget(euv, hv) = MLP3(MLP1(euv) ◦MLP1(hv) (13)

where the MLPi are independent multi-layer perceptrons (MLP). For each convolution t, a separate
message function is applied to characterize atom correlations at different scales. After taking element-
wise products of atomic fingerprints hv and pair-interaction fingerprints euv, the joint fingerprint
is further parameterized by another MLP to incorporate more non-linearity into the model. The
final updated fingerprints are used as inputs to two fully-connected layers that yield atom-wise
energies. The sum of these energies gives the total energy of the system. The atomic forces are the
negative gradients of the energy with respect to atomic positions. They are easily computed through
automatic differentiation implemented in PyTorch (34) and Tensorflow (35). We used PyTorch in our
demonstrations.
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8.4 Differential Histograms

In this section, we present the calculation of an approximate histogram with Gaussian smearing
functions. Given an observation r that we wish to approximately map onto a histogram with k bins,
the Gaussian-smeared function ρk(r) is given by

ρk(r) = e−
(r−rk)2

δ /
∑
k

e−
(r−rk)2

δ , (14)

where δ approximates the bin width. A Gaussian basis is used to replace the non-differentiable Dirac
Delta functions to compute an approximate histogram. The total normalized histogram is the expected
value over individual samples of r over the all the observations of pair distances (between atoms i
and j) in the trajectory:

p(r) =i,j ρ(rij). (15)

The pair correlation function g(r) is obtained by normalizing by differential volume increases:

g(r) =
V

N24πr2
p(r). (16)
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