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Abstract

Generative models have increasingly been proposed as a solution to the molecular
design problem. However, it has proved challenging to control the design process
or incorporate prior knowledge. In particular, generative methods have made
limited use of three-dimensional (3D) structural information even though this is
critical to binding. This work demonstrates both a method to incorporate such
information and the benefit of doing so. We combine an existing graph-based
deep generative model, DeLinker, with a convolutional neural network to utilise
physically-meaningful 3D representations of molecules and target pharmacophores
for linker design. The 3D pharmacophoric information results in improved linker
generation and allows greater control over the design process. In multiple large-
scale evaluations, we show that including 3D pharmacophoric constraints results
in substantial improvements in the quality of generated molecules. On a new,
challenging set derived from PDBbind, our model achieves almost a 10× increase
in the number of true linkers recovered compared to the baseline DeLinker method.

1 Introduction

Drug design optimises molecules through a multi-step, iterative process in order to achieve a desired
biological response. The size of the search space [1] and discontinuous nature of the optimisation
landscape [2] are two key factors contributing to the difficulty of this problem and has resulted in
molecular design typically being undertaken by human experts.

Machine learning models for molecule generation offer an alternative approach to human-led design
or rules-based transformations. However, for these methods to be adopted in drug discovery, more
control over the generative process is required, including the ability to incorporate prior knowledge.

Linker design is a general problem in drug discovery capturing a wide range of tasks (e.g scaffold
hopping, fragment linking) where the goal is to design a molecule that incorporates two (or more)
specific substructures. In addition, some knowledge about the desired linker is typically available
(e.g. from the protein binding site or another molecule). However, currently this information, which
is crucial to successful compound design, cannot be utilised effectively by generative models.

To address this, we propose DeLinker-3D, a graph-based generative model that uses a convolutional
neural network (CNN) to incorporate physically-meaningful 3D structural information, here provided
as 3D pharmacophores [3], a general and widely-used representation in cheminformatics.
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2 Related work

Linker design Imrie et al. [4] published the first application of deep learning for molecular linker
design (“DeLinker”), reporting substantial improvement over a database-based approach, the previous
de facto computational method for this task, by including basic structural information.

Yang et al. [5] have proposed an alternative model (“SyntaLinker”) based on the transformer archi-
tecture. Their model did not incorporate structural information but instead included 1D molecular
patterns capturing factors such as the shortest linker bond distance.

Neither method fully utilises the information available in structure-based drug design. SyntaLinker
does not use any structural information, while DeLinker only incorporates the distance between
the starting substructures and their relative orientations. While this minimal parametrization had a
substantial impact on the quality of the generated molecules [4], it provides limited information about
characteristics of the binding site which are crucial to designing successful compounds.

Structure-based generative models Skalic et al. [6] generated molecules from a 3D representation
of a seed ligand. However, this approach requires a known compound, only provides 3D information
implicitly to seed their model, and offers no further control over generated compounds. As a result,
their generative model recovered fewer than 2% of seed molecules.

This idea was extended in Skalic et al. [7] to generate the ligand representation from the protein target.
However, it was not possible to control the molecule generation or impart prior knowledge beyond
the choice of protein. Further, the ligand representation need not directly correspond to molecules.

3D molecular design Recently, machine learning models have been proposed to generate 3D
molecular structures directly. Gebauer et al. [8] generated constitutional isomers of C7H10O2 , while
Gebauer et al. [9] extended this to QM9 [10, 11]. The direct generation of 3D molecular structures is
an exciting development but has not yet been applied to drug-like molecules and existing methods
are not directly applicable to the setting considered in this work.

3 DeLinker-3D

This work describes DeLinker-3D, a deep learning approach combining GNNs and CNNs to design
molecular linkers. We extend current molecular generative methods to incorporate physically-
meaningful 3D structural information, enabling prior knowledge to be readily incorporated and
greater control of the generative process by domain experts. Our underlying model is based on the
work of Imrie et al. [4], which built on the generative process introduced by Liu et al. [12] that
constructs molecules “bond-by-bond” in a breadth-first manner. Here we outline the generative
process and describe how the 3D structural information is incorporated (Figure 1).

DeLinker-3D takes as input (i) the chemical structure of the substructures that are to be linked, (ii)
the distance and angle between them, and (iii) a 3D structure of the starting substructures and the
desired pharmacophoic features. A graph representation of the starting substructures is constructed
and nodes are encoded using a gated graph neural network (GGNN) [13] in line with Imrie et al. [4].

The 3D structure of the starting molecular fragments and desired pharmacophores is voxelised to
construct a 3D grid, with atoms and pharmacophores adopting a Gaussian representation centered at
their input coordinates [14]. The voxel grid representation is passed into a 3D convolutional neural
neural network composed of three 3×3×3 convolutional layers with ReLU activation, each followed
by a 2× 2× 2 max pooling layer, with the final convolutional layer followed by a global max pooling
operation. A fully-connected layer then produces the structural encoding. This is concatenated
with the distance and angle constraints previously employed by Imrie et al. [4] and 1D counts of
the desired pharmacophores to form the structural information, D, used by the decoder to generate
molecules.

The decoding process is initialised with the node encodings together with a set of expansion nodes
whose feature vectors are drawn from N (0, I). Each node is labeled with an atom type sampled
from a classifier applied to the concatenation of the node encoding and the structural information, D.

Molecules are constructed iteratively “bond-by-bond” from this set of nodes. After each step, the
node encodings are updated by a decoder GGNN. Edges and their edge types are chosen based on the
feature vector for the (possible) edge between node v and candidate node u given by
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Figure 1: Overview of DeLinker-3D. The starting structures and 3D pharmacophore map are converted
into a graph representation and a voxel grid, respectively. These are fed into GNN and CNN encoders,
respectively. The featurisations are combined and decoded by a GNN-based decoder.

φtv,u = [t, stv, s
t
u, dv,u,H

0,Ht,D],

where stv = [zt
v, lv] is the concatenation of the hidden state of node v after t steps and its atomic label,

dv,u is the graph distance between v and u, H0 is the average initial representation of all nodes, Ht

is the average representation of nodes at generation step t, and D represents structural information.

Our model is trained using the same loss function as Imrie et al. [4] which is similar to the standard
VAE loss, including a reconstruction loss and a Kullback-Leibler (KL) regularisation term:

L = Lrecon + λKLLKL.

No extra terms are included to regularise the CNN encoding. We use the same hyperparameters for
training as Imrie et al. [4]. For additional details regarding the underlying model see Imrie et al. [4].

4 Experiments

4.1 Datasets

Our method is trained on the dataset from Imrie et al. [4] containing 418,000 fragment-molecule
pairs, derived from the subset of ZINC [15] selected at random by Gómez-Bombarelli et al. [16].

To evaluate our method, we use the test set constructed from CASF-2016 [17] by Imrie et al. [4] and
also construct a test set from the PDBbind Refined Set [18] (v. 2018). We follow the same processing
procedure as Imrie et al. [4], but only retain examples with unique linkers that contain at least 5
atoms and were not present in the training set. The PDBbind test set contains 311 examples and is
significantly more challenging than the CASF set due to the stricter inclusion criteria.

4.2 Evaluation metrics

For each pair of starting substructures in the test set, we generate 250 molecules using each method.
We adopt the same evaluation metrics as Imrie et al. [4] (see [4] for definitions) and primarily employ
the following two metrics to assess the quality of these molecules:

• Recovery: We measure in how many cases the original molecule was recovered.

• SCRDKit Linker: We employ the same 3D shape and color similarity measure based on the
methods described in Putta et al. [19] and Landrum et al. [20] utilised in Imrie et al. [4].
We calculate this score by comparing the original linker with the generated one. This score
ranges between 0 (no match) and 1 (perfect match). Scores above 0.6 indicate a good match,
while scores above 0.9 suggest an almost perfect match.
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Table 1: PDBbind set results (see Section 4.2 and Imrie et al. [4] for definitions).

Metric DeLinker DeLinker-Counts DeLinker-3D

Valid 96.8% 90.2% 92.8%
Unique 84.7% 77.1% 76.3%
Novel 82.5% 86.8% 87.6%

Recovered 2.3% 10.0% 22.2%
Pass 2D filters 64.2% 60.4% 63.8%

SCRDKit Linker
>0.6 9.9% 17.9% 25.2%
>0.7 4.3% 9.1% 13.5%
>0.8 1.7% 4.1% 6.0%
>0.9 0.4% 1.2% 1.7%

Figure 2: Number of original molecules recovered as the number of generated molecules is increased.
DeLinker-3D recovers the significantly more of the original molecules than both baselines for any
number of linkers generated.

4.3 Baselines

We compare our method, DeLinker-3D, against the work of Imrie et al. [4] (“DeLinker”) and a version
of their method which is provided with the number of each pharmacophoric feature that should be
present in the generated linker (“DeLinker-Counts”). The only difference between DeLinker-3D and
the two baselines is the structural information, D, included in the feature vector, φtv,u. This allows us
to assess directly the impact of (1) including pharmacophoric constraints, and (2) providing these
constraints as a physically-meaningful 3D structural representation rather than a 1D count vector.

4.4 Results

DeLinker-3D substantially outperforms the baseline methods in both recovered and SCRDKit Linker
with limited impact on the uniqueness of the generated molecules or the ability to pass basic 2D
chemical filters (Tables 1 and 2, Figure 2). Incorporating pharmacophoric information substantially
improves the quality of generated molecules (DeLinker-Counts vs. DeLinker). Crucially, providing
this as a 3D structural representation offers significant benefit over simply providing counts of each
feature (DeLinker-3D vs. DeLinker-Counts). On the PDBbind test set, DeLinker-3D recovered
almost 10× as many molecules as DeLinker and more than 2× as many as DeLinker-Counts (Table
1). The improvement in recovery rate persists even as substantially more linkers were generated
(Figure 2). DeLinker-3D also improves the proportion of molecules with high structural similarity
(SCRDKit Linker > 0.8) by 250% and 45% compared to DeLinker and DeLinker-Counts, respectively.
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5 Conclusion

In this paper, we developed a molecular generative method that combines GNNs with CNNs to
incorporate 3D pharmacophoric constraints. Our approach allows prior knowledge to be used to
control the design process and is readily extendable to utilise alternate 3D structural representations.
The experimental results show our model significantly outperforms previous methods for linker
design and demonstrates the power of including pharmacophoric constraints as a 3D representation as
opposed to a 1D count vector. Our method allows greater synergy between human design hypotheses
and machine learning-based molecular design.
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A Appendix

Table 2: CASF set results for linkers with ≥5 atoms.

Metric DeLinker DeLinker-Counts DeLinker-3D

Valid 94.7% 86.0% 89.6%
Unique 72.9% 58.6% 58.2%
Novel 68.7% 68.4% 71.1%

Recovered 29.8% 41.5% 50.0%
Pass 2D filters 71.7% 71.7% 68.6%

SCRDKit Linker
>0.6 25.0% 44.7% 53.7%
>0.7 14.3% 32.7% 39.5%
>0.8 7.9% 22.3% 26.3%
>0.9 3.2% 12.0% 14.4%
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