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Abstract

Deep generative models have recently been applied to molecule design. If the
molecules are encoded in linear SMILES strings, modeling becomes convenient.
However, models relying on string representations tend to generate invalid samples
and duplicates. Prior work addressed these issues by building models on chemically-
valid fragments or explicitly enforcing chemical rules in the generation process. We
argue that an expressive model is sufficient to implicitly and automatically learn the
complicated chemical rules from the data, even if molecules are encoded in simple
character-level SMILES strings. We propose to learn latent space energy-based
prior model with SMILES representation for molecule modeling. Our experiments
show that our method is able to generate molecules with validity and uniqueness
competitive with state-of-the-art models. Interestingly, generated molecules have
structural and chemical features whose distributions almost perfectly match those
of the real molecules.

1 Introduction

Designing molecules with desired properties is of vital importance in applications such as drug
design and material science. Molecules are in the form of graphs. It is hence challenging to search
for desirable ones in the molecule space. Recently, deep generative models have been applied to
molecule modeling [2, 5, 11, 10, 8]. Most methods adopt Variational Autoencoder (VAE) model [4].
It embeds molecules into a continuous latent space, allowing for more efficient optimization, and
then decodes the latent vector to a molecule, enabling new molecule generation.

In molecule modeling, two types of representations are widely used. One is simplified molecular input
line entry systems (SMILES) [12] with which a molecule graph is linearized into a string consisting
of characters that represent atoms and bonds. With this representation, an autoregressive model can
be utilized to capture the chemical rules among atoms and bonds. The same model is widely used and
called language model (LM) in natural language processing. Following [8], we call models adopting
this representation as LM-based models. Another representation works directly with the graph where
nodes and edges represent atoms and bonds respectively. Graph allows for explicitly encoding and
directly enforcing chemical laws. To guarantee validity of generated molecules, many graph-based
models [6, 9, 10] sequentially generate atoms (nodes) and bonds (edges), continuously check if the
generated elements satisfy valency rules. Graph-based models are however more complicated and
less efficient to train and sample from, compared to LM-based models.

Despite the simplicity and efficiency of LM-based models, they often produce invalid samples and
duplicates. The recent work of [8] proposed FragmentVAE and argued that LM-based models can
produce samples with perfect validity and uniqueness. Fragments are small-weight and chemically
sound compounds, and FragmentVAE uses fragments instead of atoms as basic elements in molecule
generation. To enhance uniqueness, FragmentVAE replaces infrequent fragments in generated
molecules by new fragments that are uniformly sampled from a pool of infrequent fragments. These
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techniques make the SMILES-fragment-based model competitive with the state-of-the-art graph-
based models.

Instead of redesigning molecule representation or resorting to more complicated graph models, we
argue that an expressive model is sufficient to capture the complicated chemical rules implicitly and
generate valid and unique molecules, even with the character-level SMILES representation instead of
fragment-level representation. Previous VAE-based methods rely on a generator network to map a
prior distribution to be close to the data distribution and assume the prior to be a simple isotropic
Gaussian distribution. Although a neural network generator is highly expressive, the assumption on
the prior may cause ineffective learning of the model, which might explain why previous methods
fail to generate valid and unique molecules without explicitly enforcing chemical rules. In this article,
we propose to learn a latent space energy-based prior model [7] in addition to the generator network
from observed molecules. Specifically, the prior model is an energy-based correction of the isotropic
Gaussian distribution and the correction is learned from empirical data. Such a prior model improves
the expressivity of the generator model. Our experiments demonstrate that our method is able to
generate valid and unique samples, with the performance on par with the state-of-the-art models.
Interestingly, we observe that the generated samples show structural and chemical properties (e.g.,
solubility, drug-likeness) that closely resemble the ground truth molecules.

2 Methods

2.1 Model

Let x ∈ RD be an observed molecule such as represented in SMILES strings. Let z ∈ Rd be the
latent variables, where D � d. Consider the following model,

z ∼ pα(z), x ∼ pβ(x|z), (1)

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down generative model with
parameters β. In VAE, the prior is simply assumed to be an isotropic Gaussian distribution. In our
model, pα(z) is formulated as an energy-based model or a Gibbs distribution,

pα(z) =
1

Z(α)
exp(fα(z))p0(z). (2)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian as in VAE. fα(z) is
the negative energy and is parameterized by a small multi-layer perceptron with parameters α.
Z(α) =

∫
exp(fα(z))p0(z)dz = Ep0 [exp(fα(z))] is the normalizing constant or partition function.

The generative model, pβ(x|z), is a conditional autoregressive model,

pβ(x|z) =
T∏
t=1

pβ(x
(t)|x(1), ..., x(t−1), z) (3)

which is parameterized by a simple recurrent network with parameters β and x(t) indicates a one-hot
encoded SMILES string.

It is worth pointing out the simplicity of the generative model of our method considering that those in
prior work involve complicated graph search algorithm or alternating generation of atoms and bonds
with multiple networks.

2.2 Learning Algorithm

Suppose we observe training examples (xi, i = 1, ..., n). The log-likelihood function is

L(θ) =

n∑
i=1

log pθ(xi). (4)

where θ = (α, β). The learning gradient can be calculated according to

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ(log pα(z) + log pβ(x|z))] . (5)
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For the prior model,∇α log pα(z) = ∇αfα(z)− Epα(z)[∇αfα(z)]. Thus the learning gradient for
an example x is

δα(x) = ∇α log pθ(x) = Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)]. (6)

α is updated based on the difference between z inferred from empirical observation x, and z sampled
from the current prior model.

For the generative model,

δβ(x) = ∇β log pθ(x) = Epθ(z|x)[∇β log pβ(x|z)], (7)

where
∑T
t=1 log pβ(x

(t)|x(1), ..., x(t−1), z) for text modeling which is about the reconstruction error.

Expectations in (6) and (7) require MCMC sampling of the prior model pα(z) and the posterior
distribution pθ(z|x). Instead of learning a separate network for approximate inference, we follow [7]
and use Langevin dynamics for short run MCMC which iterates:

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) +
√
2sεk, k = 1, ...,K. (8)

where we initialize the dynamics from the fixed prior distribution of z, i.e., p(z) ∼ N(0, Id) and
εk ∼ N(0, Id) is the Gaussian white noise. π(z) can be either pα(z) or pθ(z|x). In either case,
∇z log π(z) can be efficiently computed by back-propagation. The dynamics runs a fixed number of
K steps with step size s.Denote the distribution of zK to be π̃(z). As shown in [1], the Kullback-
Leibler divergence DKL(π̃‖π) decreases to zero monotonically as K →∞.

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z), and denote the
distribution of zK to be p̃θ(z|x) if π(z) = pθ(z|x). The learning gradients in equations (6) and (7)
are modified to

δ̃α(x) = Ep̃θ(z|x)[∇αfα(z)]− Ep̃α(z)[∇αfα(z)], (9)

δ̃β(x) = Ep̃θ(z|x)[∇β log pβ(x|z)]. (10)

We then update α and β based on (9) and (10), where the expectations can be approximated by Monte
Carlo samples. See [7] for theoretical foundation of the resulting learning algorithm. The short-run
MCMC is efficient and mixes well in latent space due to the relative low-dimensionality of the latent
space.

3 Experiments

A standard molecule dataset, ZINC [3], is used in our experiments. The latent space dimension is 32.
The latent space energy-based model is implemented with a three-layer MLP with hidden dimension
200. The generator is a single layer LSTM with a hidden dimension of 1024 and the embedding
dimension is 512. Figure 1 shows sample molecules generated from the data and randomly generated
from our model.

(a) ZINC (b) Generated
Figure 1: Sample molecules taken from the ZINC dataset (a) and generated by our model (b).

3



3.1 Validity, novelty, and uniqueness

We evaluate our model with three commonly used metrics: 1) validity, the percentage of valid
molecules among all the generated ones; 2) novelty, the percentage of generated molecules not
appearing in training set; 3) uniqueness, the percentage of unique ones among all the generated
molecules. All metrics are computed based on 10,000 randomly generated molecules. Our model
greatly improve previous LM-based models on validity and uniqueness and are competitive with
fragment-based model and graph-based models using valency check. It is interesting to notice that
the state-of-the-art graph-based models such as GCPN [13] and GraphAF [10], generate molecules
with low validity rates if valency check is not applied. It appears that the graph-based models do not
capture the chemical rules but instead strongly relies on explicit constraints. In contrast, our model is
able to automatically learn the rules from the data.

Model Model Family Validity w/ check Validity w/o check Novelty Uniqueness

GraphVAE (Simonovsky et al., 2018) Graph 0.140 - 1.000 0.316
CGVAE (Liu et al., 2018) Graph 1.000 - 1.000 0.998
GCPN (You et al., 2018) Graph 1.000 0.200 1.000 1.000
NeVAE (Samanta et al., 2019) Graph 1.000 - 0.999 1.000
MRNN (Popova et al., 2019) Graph 1.000 0.650 1.000 0.999
GraphNVP (Madhawa et al., 2019) Graph 0.426 - 1.000 0.948
GraphAF (Shi et al., 2020) Graph 1.000 0.680 1.000 0.991

ChemVAE (Gomez-Bombarelli et al., 2018) LM 0.170 - 0.980 0.310
GrammarVAE (Kusner et al., 2017) LM 0.310 - 1.000 0.108
SDVAE (Dai et al., 2018) LM 0.435 - - -
FragmentVAE (Podda et al., 2020) LM 1.000 - 0.995 0.998
Ours LM 0.955 - 1.000 1.000

Table 1: Performance obtained by our model against LM-based and graph-based baselines.

3.2 Molecular properties of samples

If a model distribution matches the data distribution well, marginal distributions of any statistics would
also match. Three properties are critical for molecule modeling, especially in de novo drug design:
1) octanol/water partition coefficient (logP) which measures solubility; 2) quantitative estimate of
drug-likeness (QED); 3) synthetic accessiblity score (SAS) which measures ease of synthesis. Each
property can be viewed a statistic of the molecule data. In Figure 2, we compare the distributions of
the three properties based on 10,000 samples from the data and our model. The distributions based on
FragmentVAE are also included for a reference. It is clear that our model produces distributions close
to data property distributions, even though there is not any explicit supervision given for learning the
three molecular properties. Also, our model evidently improve over FragmentVAE in this regard.

Figure 2: Distributions of molecular properties of data and 10,000 random samples from FragmentVAE and our
model.

4 Conclusion

This work proposes to jointly learn a latent space energy-based prior model and a simple autoregres-
sive generator for molecule modeling. Our approach yields a simple yet highly expressive model.
The learned model generates valid and unique molecules with character-level SMILES representation.
Key chemical properties of the generated samples closely resemble those of the data on a distribution
level. These results provide strong evidence that the proposed model is able to automatically learn
complicated chemical rules implicitly from the data.
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