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Abstract

Retrosynthesis, of which the goal is to find a set of reactants for synthesizing a
target product, is an emerging research area of deep learning. While the existing
approaches have shown promising results, they currently lack the ability to consider
commercial availability of the reactants or generalize to unseen reaction templates.
In this paper, we propose a new approach that mitigates the issues by reformulating
retrosynthesis into a selection problem of reactants from a candidate set of com-
mercially available molecules. To this end, we design an efficient reactant selection
framework, named RETCL (retrosynthesis via contrastive learning), for enumerat-
ing all of the candidate molecules based on selection scores computed by graph
neural networks. For learning the score functions, we propose a novel contrastive
training scheme with hard negative mining. Extensive experiments demonstrate
the benefits of the proposed selection-based approach over the prior works. For
example, when all 671k reactants in the USPTO database are given as candidates,
our RETCL achieves top-1 exact match accuracy of 71.3% for the USPTO-50k
benchmark, while a recent transformer-based approach achieves 59.6%.

1 Introduction

Retrosynthesis [5], finding a synthetic route Reactants Products
starting from commercially available reactants

. . . Synthesns (forward)
to synthesize a target product (see Figure 1), is zz/k Q @ 8
at the center of focus for discovering new mate- RetrosyntheS|s (backward) J\T\H
rials in both academia and industry. To address
this, researchers have developed computer-aided
frameworks to automate the process of retrosynthesis for more than three decades [6]. The recent
ML-based approaches mainly fall into two categories depending on their reliance on the reaction
templates, i.e., sub-graph patterns describing how the chemical reaction occurs among reactants.
Although the template-based approaches [4, 8, 22] can provide chemically interpretable predictions,
they limit the search space to known templates and cannot discover novel synthetic routes. In contrast,
template-free approaches [13, 16, 23, 28] generate the reactants from scratch to avoid relying on the
reaction templates. However, they require to search the entire molecular space, and their predictions
could be either unstable or commercially unavailable.

Figure 1: Chemical reactlon.

We emphasize that retrosynthesis methods are often required to consider the availability of reactants
and generalize to unseen templates in real-world scenarios. For example, when a predicted reactant
is not available (e.g., not purchasable) for a chemist or a laboratory, the synthetic path starting
from the predicted reactant cannot be instantly used in practice. Moreover, chemists often require
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Figure 2: Illustration of the search procedure in RETCL.

retrosynthetic analysis based on unknown reaction rules. This is especially significant due to our
incomplete knowledge of chemical reactions; e.g., 29 million reactions were regularly recorded
between 2009 and 2019 in a chemical database, Reaxys [18].

Contribution. In this paper, we propose a new selection-based framework, named RETCL (retrosyn-
thesis via contrastive learning), which allows considering the commercial availability of reactants. To
this end, we reformulate the task of retrosynthesis as a problem where reactants are selected from a
candidate set of available molecules. To address the problem, we design selection scores defined by
the similarity between GNN-based molecular embeddings of the product and the reactants. We also
propose a novel contrastive learning scheme [3, 12, 24] with hard negative mining [11] to overcome
a scalability issue while handling a large-scale candidate set. We remark that this selection-based
approach has two benefits over the existing ones: (a) it guarantees the commercial availability of the
selected reactants; (b) it can generalize to unseen reaction templates and find novel synthetic routes.

To demonstrate the effectiveness of our RETCL, we conduct various experiments based on the USPTO
database [17]. Thanks to our prior knowledge on the candidate reactants, our method achieves 71.3%
test accuracy and significantly outperforms the baselines without such prior knowledge. Furthermore,
our algorithm demonstrates its superiority even when enhancing the baselines with candidate reactants,
e.g., our algorithm improves upon the existing template-free approach [1] by 11.7%. Moreover, we
evaluate generalization ability of RETCL to unseen templates and demonstrate how our RETCL can
be also applied to the multi-step retrosynthesis setting.

2 Selection-based retrosynthesis via contrastive learning

A chemical reaction R — P is a synthetic process of converting a reactant-set R = {R1, ..., Rp},
i.e., a set of reactant molecules, to a product molecule P (see Figure 1). We aim to solve the problem
of retrosynthesis by finding the reactant-set R from a candidate set C which can be synthesized to the
target product P. Especially, we consider the case when the candidate set C consists of commercially
available molecules. Throughout this paper, we say that the synthetic direction (from R to P) is
forward and the retrosynthetic direction (from P to R) is backward.

To find a reactant-set R = { Ry, ..., R, }, we select each element R; sequentially from the candidate
set C based on the backward (retrosynthetic) selection score )(R|P, Rgiven). Note that the score
function is also capable of selecting a special reactant Rpa1+ to stop updating the reactant-set. Using
beam search, we choose top T’ likely reactant-sets R, . . ., Rp. Next, we rank the chosen reactant-sets
Ri1,..., Ry based on the backward selection score 1 (R| P, Rgiven) and the forward (synthetic) score
¢(P|R). Note that 1)( R| P, Rgiven) and ¢(P|R) correspond to backward and forward directions of
a chemical reaction R — P, respectively (see Figure 1). Using both score functions, we define an
overall score on a chemical reaction R — P as follows:

n+1
score(P,R) = s (1 S UBao P A Retyseoos Ry D 0(PIR) ) (1)
where R,,+1 = Rna1+ and Il is the space of permutations defined on the integers 1, . . . , n+1 satisfying

m(n+1) = n+1. Figure 2 illustrates this search procedure of our framework.



Score design. One can observe that the molecular graph of the product P can be decomposed into
subgraphs from each reactant of the reactant-set 7R. Moreover, when selecting reactants sequentially,
the structural information of the previously selected reactants Rg;iven should be ignored to avoid
duplicated selections. From these observations, we design the scores v and ¢ as follows:

w(R|P, Rgiven) = CosSim (f@(P) - ZSERgiven 99(5), ha(R)) ,

O(PIR) = Cossin (3 ao(R), ho(P)),

where CosSim is the cosine similarity and fy, gy, hg are GNN-based embedding functions from a
molecule to a fixed-sized vector with parameters 6. This design allows the search procedure to be
processed as an efficient matrix-vector multiplication on the large candidate set C. We also provide a
technique for incorporating additional supervision such as reaction types (e.g., carbon-carbon bond
formation) in Appendix A. Other implementation details are described in Appendix B.

Training scheme. For learning the score functions ¢ and ¢, we consider two classification tasks
with the following probabilities:

exp(Y(R|P, Rgiven)/T)
Yo reevipy P (P, Ryiven) /T)’
exp(¢(P|R)/T)
Y prea\r XP(O(P'[R)/7)’

where 7 is a hyperparameter for temperature scaling and C is the given candidate set of molecules.
Now we define the following losses for a reaction R — P:

p(R‘P7 Rgivena C) =

9(P|R,C) =

Ebackward(PaR|97C = 7IHaXZ logp W(i)‘Pv {Rﬂ'(l)?""Rﬂ'(i—l)}’C)’
Eforward<Pa R|97 C) = - log q(P|R’ C)’

where R,, 1 = Rhua1t and Il is the space of permutations defined on the integers 1, . . . , n+1 satisfying
m(n+1) = n+1. We note that such an objective is known as contrastive loss which has recently
gained much attention in various domains [3, 12, 19, 24, 25]. Since the optimization of the above
losses is intractable due to the large number of candidate molecules, we approximate C with the set
Cp of molecules in a mini-batch B of reactions where Cz = Uz p)es R U {P}. Then we arrive at

the following training objective:

(Bw ‘B| Z (R,P)e Bcbackward(P R|9 CB) + Lforward(P Rw CB) (2)

Hard negative mining. In our setting, molecules in the candidate set Ci are easily distinguishable.
Hence, learning to discriminate between them is often not informative. To alleviate this issue, we

replace the C with its augmented version C~B by adding hard negative (i.e., similar) samples where
Cs = Cs U Ujsec, {Top-K nearest neighbors of M from C}. The nearest neighbors are defined

with respect to the cosine similarity on {hy (M)} rrcc. We found that the hard negative mining plays
a significant role in improving the performance of RETCL as shown in Appendix C.

3 Experiments

Table 1 evaluates our RETCL and other baselines using the top-k exact match accuracy in USPTO-50k.
Our framework significantly outperforms a concurrent selection-based (SB) approach, Bayesian-
Retro [10], by 23.8% in terms of top-1 accuracy when reaction type is unknown. Furthermore, ours
also outperforms template-based (TB) approaches utilizing the different knowledge, i.e., reaction
templates instead of candidates, with a large margin, e.g., 18.8% over GLN [8]. The full results and
failure case study are provided in Appendix D and E, respectively.

Incorporating the knowledge of candidates into baselines. It is hard to fairly compare between
methods operating under different assumptions. For example, template-based approaches require
the knowledge of reaction templates, while our selection-based approach requires that of available
reactants. To alleviate such a concern, we improve the baselines to additionally use our prior



Table 1: Top-k exact match accuracy (%) of computer- Table 2: Top-k exact match accuracy (%) of

aided approaches in USPTO-50k. computer-aided approaches with discarding
Category Method Top-1 Top-5 Top-10 predictions not in the candidate set C.
Transformer [13] 37.9 62.7 - Method Top-1  Top-10  Top-100
TF SCROP [28] 437 652 687 Transformer [1]  59.6  77.0 79.5
Transformer [1] 44.8 67.7 71.1 RETCL (Ours) 713 924.1 96.7
G2Gs [23] 48.9 72.5 75.5 GLN [8] 773 92.5 933
retrosim [4] 37.3 63.3 74.1 . N
TB neuralsym [22] aa a4 78.9 Table 3: Generalization to USPTO-full.
GLN [8] 52.5 75.6 83.7 Method Top-1 Top-10 Top-50
SB Bayesian-Retro [10]  47.5 77.0 80.3 GLN [8] 26.7 42.2 46.7
RETCL (Ours) 713 920 94.1 RETCL (Ours)  39.9 57.1 60.9

Table 4: Top-10 exact match accuracy (%) of our RETCL and GLN [8] trained on USPTO-50k
without reaction types from 6 to 10.
Method Average 1 2 3 4 5 6 7 8 9 10

GLN [8] 39.7 843 922 707 593 8.7 00 00 00 05 00
RETCL (Ours) 55.6 939 976 864 670 956 591 119 183 261 0.0

knowledge of candidates C; we filter out reactants outside the candidates C from the predictions made
by the baselines. As reported in Table 2, our framework still outperforms the template-free (TF)
approach with a large margin. Moreover, the performance of the template-based approach, GLN
[8], is saturated to 93.3% due to the limited coverage of reaction templates while ours continues to
increase the top-k accuracy as k increases.

Generalization to unseen templates. The advantage of our framework over the template-based
approaches is the generalization ability to unseen reaction templates. To demonstrate it, we remove
reactions of classes (i.e., reaction types) from 6 to 10 in training/validation splits of USPTO-50k.
In this case, the templates extracted from the modified dataset cannot be applied to the reactions
of different classes. Hence the template-based approaches suffer from the generalization issue; for
example, GLN [8] cannot provide correct predictions for reactions of unseen types as reported in
Table 4, while our RETCL is able to provide correct answers.

We also conduct a more realistic experiment: testing on a larger dataset, the test split of USPTO-full
provided by [8], using a model trained on a smaller dataset, USPTO-50k. As reported in Table 3, our
framework provides a consistent benefit over the template-based approaches. These results show that
our strength of generalization ability. More details of datasets are provided in Appendix F.

Mult.l-step retljosynthems. To con51der. a more Table 5: Multi-step retrosynthesis.
practical scenario, we evaluate our algorithm for Single Hybrid
the task of multi-step retrosynthesis. To this end, Single-siepmodel MLP TF TF+TF RETCLYTF

we use the synthetic route benchmark provided
by [2]. Especially, we focus on demonstrating Sicc‘ rate (%) 8684 9105 9054 %684
> . vg. length - 4.30 431 3.90
how our method could be used to improve the
existing template-free Transformer model (TF, [1]). Given a target product, the hybrid algorithm
operates as follows: (1) our RETCL proposes a set of reactants from the candidates C; (2) TF
proposes additional reactants outside the candidates C; (3) TF chooses the top-K reactants based on
its log-likelihood of all the proposed reactants. As an additional baseline, we replace RETCL by
another independently trained TF in the hybrid algorithm. We use Retro* [2] for efficient route search
with the retrosynthesis models and evaluate the discovered routes based on the metrics used by [2, 14].
As reported in Table 5, our model can enhance the search quality of the existing template-free model
in the multi-step retrosynthesis scenarios. The detailed description of this multi-step retrosynthesis
experiment and the discovered routes are provided in Appendix G.

4 Conclusion

In this paper, we propose RETCL for solving retrosynthesis. To this end, we reformulate retrosynthesis
as a selection problem of commercially available reactants, and propose a contrastive learning scheme
with hard negative mining to train our RETCL. Through the extensive experiments, we show that our
framework achieves outstanding performance for the USPTO benchmarks. We believe that extending



our framework to multi-step retrosynthesis or combining with various contrastive learning techniques
in other domains could be interesting future research directions.
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A Incorporating reaction types
A human expert could have some prior information about a reaction type, e.g., carbon-carbon bond
formation, for the target product P. To utilize this prior knowledge, we add trainable embedding bias

vectors u(*) and v(*) for each reaction type ¢ into the query embeddings of + and ¢, respectively. To
be specific,

gg(S) + u(t), hg(R)) ,

go(R) +v®, hg(P)) ,

Y(R|P, Rgiven, t) = CosSim (fg(P) -3
¢(P|R,t) = CosSim (Z

where bias vectors v and v are initialized by zero at beginning of training. We show that this additional
knowledge provides a significant gain as reported in Section D.

SE€Rgiven

RER



B Implementation details

We here provide a detailed description of our implementation. Since the USPTO datasets provide
molecule information based on the SMILES [27] format, we convert a SMILES representation to a
bidirectional graph with atom and bond features. To this end, we use RDKit> and Deep Graph Library
(DGL) [26]. Let G = (V, E) be the molecular graph, and X (v) € R%:= and X (uv) € R% are
features for an atom v € V and a bond uv € E in the molecular graph G, respectively. The atom
feature X (v) includes the atom type (e.g., C, I, B), degree, formal charge, and so on; the bond feature
X (uv) includes the bond type (single, double, triple or aromatic), whether the bond is in a ring, and
so on. For more details, we highly recommend to see DGL and its extension, DGL-LifeSci.?

Architecture. We build our graph neural network (GNN) architecture based on the molecular graph
G with features X as follows:

HO(v) ¢ ReLU (BN (Wa(SQmX (v) + ZueN(v) w0 x (uv))) ,

) U] (1-1) )
H"(v) + ReLU <BN <W1 Zué]\/(v) HY () 4 ZueN(v) wil)l X (uv))) ,
H®(v) « ReLU (BN (Wé”H”)(v) + H(l‘l)(v))) Jforl=1,2,...,L,

H(v) < Wiase HP) (v),

where N (v) is the set of adjacent vertices with v. This architecture is based on structure2vec [8, 7],
however it is slightly different with the model used by [8]: we use ReLU after BN instead of BN after
ReLU; we append a last linear model W1,5. Based on the atom-level embeddings H (v), we construct
query and key embeddings fy, gg, and hy using three separate residual blocks as follows:

fo(M) (H(v) + BN(WS ReLu(BN(W )ReLU(H(v)))))) :
veV

go(M) > (H(v) + BN(WS”ReLU(BN(W{* ReLU(H (1)) )
veV

he(M) + > (H(v) +BN(Wéh)ReLU(BN(Wl(h)ReLU(H(v)))))) ,
veV

where M is the corresponding molecule with the molecular graph G. Note that 6 includes all W
defined above, and we omit bias vectors of the linear layers due to the notational simplicity. We found
that these design choices, e.g., sharing GNN layers and using residual layers, also provide an accuracy
gain. Therefore, more sophisticated architecture designs could provide further improvements; we
leave it for future work.

Architecture. To parameterize the graph neural networks fy, gy and hy, we use a single shared
S-layer structure2vec [7, 8] and three separate 2-layer residual blocks with an embedding size of 256.
We first apply the residual blocks on vertex-level embedding vectors obtained from the sturecture2vec,
and then aggregate them via sum pooling to obtain the graph-level embedding.

Optimization. For learning the parameter 6, we use the stochastic gradient descent (SGD) with a
learning rate of 0.01, a momentum of 0.9, a weight decay of 1075, a batch size of 64, and a gradient
clip of 5.0. We train our model for 200k iterations and evaluate on the validation split every 1000
iterations. The information of the nearest neighbors is also updated every 1000 iterations and we
choose K = 4 hard-negative samples during training. When evaluating on the test split, we use the
best validation model with a beam size of 200.

To sum up, we use Pytorch [20] for automatic differentiation, Deep Graph Library [26] for building
graph neural networks, and RDKit for processing SMILES [27] representations. All our models can
be executed on single NVIDIA RTX 2080 Ti GPU.

2Open-Source Cheminformatics Software, https://www.rdkit.org/
3Bringing Graph Neural Networks to Chemistry and Biology, https://lifesci.dgl.ai/
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C Ablation study

Table 6 shows the effect of components of our framework. First, Table 6: Ablation study.
we found that the hard negative mining as described increases S(PR) K
the performance significantly. This is because there are many

sum Top-1 Top-10

similar molecules in the candidate set C, thus a model could 5 1 2312 3313
predict slightly different reactants without hard negative mining. v 2 70.9 927
We also demonstrate the effect of checking the synthesizablity of v 3 g;'é gég
the predicted reactants with ¢(P|R). As seen the fourth and fifth v 4 v 713 941

rows in Table 6, using ¢(P|R) provides a 2.6% gain in terms of
top-10 accuracy. Moreover, we empirically found that sum pooling for aggregating node embedding
vectors is more effective than mean pooling. This is because the former can capture the size of
molecules as the norm of graph embedding vectors.



D Full results

Table 7: The top-k exact match accuracy (%) of computer-aided approaches in USPTO-50k. The
template-based approaches use the knowledge of reaction templates while others do not. fThe results
are reproduced using the code of [1].
Category Method Top-1 Top-3 Top-5 Top-10 Top-20 Top-50
Reaction type is unknown

Transformer [13] 37.9 57.3 62.7 -
SCROP [28] 437 60.0 65.2 68.7 - -

Template-free o sformer [1] 448 626 677 711 ; -
G2Gs [23] 48.9 67.6 72.5 75.5 - -
retrosim [4] 37.3 54.7 63.3 74.1 82.0 85.3
Template-based neuralsym [22] 44.4 65.3 72.4 78.9 82.2 83.1
GLN [8] 525 69.0 75.6 83.7 89.0 92.4

Bayesian-Retro [10]  47.5 67.2 77.0 80.3 - -
RETCL (Ours) 71.3 86.4 92.0 94.1 95.0 96.4

Reaction type is given as prior

Selection-based

seq2seq [16] 374 524 57.0 61.7 65.9 70.7

~ Transformer' [1] 54.1 70.0 74.2 77.8 80.4 83.3
Template-free SCROP [28] 500 748 781  8l.1 - -
G2Gs [23] 61.0 81.3 86.0 88.7 - -

retrosim [4] 52.9 73.8 81.2 88.1 91.8 92.9

Template-based neuralsym [22] 55.3 76.0 81.4 85.1 86.5 86.9

GLN [8] 64.2 79.1 85.2 90.0 923 93.2

Bayesian-Retro [10]  55.2 74.1 81.4 83.5

Selection-based  RprCL Ours) 789 904 939 952 958 967

Table 8: The top-k exact match accuracy (%) of our RETCL, Transformer [1] and GLN [8] with
discarding predictions not in the candidate set C.

Category Method Top-1 Top-5 Top-10 Top-50 Top-100 Top-200
Reaction type is unknown
Template-free Transformer [1]  59.6 74.3 77.0 79.4 79.5 79.6
RETCL (Ours)  71.3 92.0 94.1 96.4 96.7 97.1
Template-based GLN [8] 713 90.0 92.5 93.3 93.3 93.3
Reaction type is given as prior
Template-free Transformer [1]  68.4 82.4 84.3 85.9 86.0 86.1
RETCL (Ours) 789 93.9 95.2 96.7 97.1 97.5
Template-based GLN [8] 82.0 917 92.9 93.3 93.3 93.3

10



E Failure case study

Figure 3 shows examples of wrong predictions from our framework. We found that the reactants of
wrong predictions are still similar to the ground-truth ones. For example, the top-3 predictions of the
examples A and B are partially correct; the larger reactant is correct while the smaller one is slightly
different. In the example C, the ring at the center of the product is broken in the ground-truth reactants
while our RETCL predicts non-broken reactants. Surprisingly, in a chemical database, Reaxys, we
found a synthetic route starting from reactants in the top-2 prediction to synthesize the target product.

Product Ground-truth Reactants Top-1 Top-2 Top-3
< N -~ A5 (‘\\I.
s . O A meg(g s U }2:— N AU
L% 7~ 0 - O/g/ Y
o S0 A o R0
v S I RO Ry IR
£ " : g «
:ﬁ }J \'Q r ‘</>/r ‘(,% 7/:( )/(/@ {/}/F
2 e O as O s
o O \:\ F'\_'\ h\\_q\ “\_\
5 (e N+ 20 * S Ns o S INIs o0 SN BNV s a0

Figure 3: Failure cases of RETCL.

As illustrated in Figure 4, the prediction exists as a 3-step reaction with two reagents (sodium acetate
and thiophene) in the chemical literature [9].# Note that our framework currently does not consider
reagent prediction. Therefore, our prediction can be regarded as an available (i.e., correct) synthetic

path in practice.
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Figure 4: A synthetic path existing in Reaxys based on RETCL’s prediction.

“We found this synthetic path and the corresponding literature from a chemical database, Reaxys. Note that
the sodium acetate and the thiophene are considered as reagents in Reaxys.
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F Dataset details

We here describe the details of USPTO datasets. The reactions in the USPTO datasets are derived
from the US patent literature [17]. The entire set, USPTO 1976-2016, contains 1.8 million raw
reactions. The commonly-used benchmark of single-step retrosynthesis is USPTO-50k containing
50k clean atom-mapped reactions which can be classified into 10 broad reaction types [21]. See Table
9a for the information of the reaction types. For generalization experiments, we introduce a filtered
dataset, USPTO-50k-modified, which contains reactions of reaction types from 1 to 5. We report the
number of reactions of the modified dataset in Table 9b. We also use the USPTO-full dataset, provided
by [8], which contains 1.1 million reactions. Note that we use only the test split of USPTO-full
(i.e., only 101k reactions) for testing generalizability. Note that we do not use atom-mappings in the
USPTO benchmarks. Moreover, we do not consider reagents for single-step retrosynthesis following
prior work [8, 13, 15, 16].

Table 9: The detailed information on USPTO datasets.

(a) The information about reaction types in USPTO-50k.  (b) The number of reactions in USPTO datasets.

ID Fraction (%) Description Dataset Split  # of reactions
1 30.3 heteroatom alkylation and arylation Train 40,008

2 23.8 acylation and related processes USPTO-50k Val 5,001

3 11.3  C-C bond formation Test 5,007

§ L e lomaion 2
’ . USPTO-50k-modified ~ Val 3,429

6 16.5 deprotections Test 5007

7 9.2 reductions ’

8 1.6 oxidations Train 810,496

9 3.7 functional group interconversion (FGI) USPTO-full Val 101,311

10 0.5 functional group addition (FGA) Test 101,311
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G Multi-step retrosynthesis

For the multi-step retrosynthesis experiment, we use a synthetic route dataset provided by [2]. This
dataset is constructed from the USPTO [17] database like other benchmarks. We recommend to
see [2] for the construction details. The dataset contains 299202 training routes, 65274 validation
routes, and 190 test routes. We first extract single-step reactions and molecules from the training
and validation splits of the dataset. The extracted reactions are used for training our RETCL and
Transformer (TF, [1]), and the molecules are used as the candidate set Cyrain® for ours. When testing
the single-step models with Retro* [2], we use all starting molecules (i.e., 114802 molecules) in the
routes in the dataset as the candidate set C. This reflects more practical scenarios because intermediate
reactants often be unavailable in multi-step retrosynthesis. We remark that TF also uses the candidate
set C as the prior knowledge for finishing the search procedure.

The evaluation metrics are success rate and average length of routes. The success means that
a synthetic route for a target product is successfully discovered under a limit of the number of
expansions. We set the limit by 100 and use only the top-5 predictions of a single or hybrid model
for each expansion. When computing the average length, we only consider the cases where all
the single-step models discover routes successfully. As [2] did, we use the negative log-likelihood
computed by TF as the reaction cost.

Figure 5 and 6 illustrate the discovered routes by TF and RETCL+TF under the aforementioned
setting. The molecules in the blue boxes are building blocks (i.e., available reactants) and the numbers
indicate the reaction costs (i.e., the negative log-likelihoods computed by TF). As shown in the
figures, our algorithm allows to discover a shorter and cheaper route.
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(b) RETCL+Transformer (ours)

Figure 5: Synthetic routes discovered by (a) Transformer and (b) our RETCL+Transformer.

Note that this candidate set is used only for training.
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Figure 6: Synthetic routes discovered by (a) Transformer and (b) our RETCL+Transformer.
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