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Abstract

Proteins are miniature machines whose function depends on their three-dimensional
(3D) structure. Determining this structure computationally remains an unsolved
grand challenge. A major bottleneck involves selecting the most accurate structural
model among a large pool of candidates, a task addressed in model quality assess-
ment. Here, we present a novel deep learning approach to assess the quality of a
protein model. Our network builds on a point-based representation of the atomic
structure and rotation-equivariant convolutions at different levels of structural
resolution. These combined aspects allow the network to learn end-to-end from
entire protein structures. Our method achieves state-of-the-art results in scoring
protein models submitted to recent rounds of CASP, a blind prediction community
experiment. Particularly striking is that our method does not use physics-inspired
energy terms and does not rely on the availability of additional information (beyond
the atomic structure of the individual protein model), such as sequence alignments
of multiple proteins.

1 Introduction

Proteins–—important components of the cell which perform a wide array of functions—–comprise
long chains of amino acids that fold into compact globular 3D structures. Determination of this 3D
structure is critical not only for understanding how proteins function, but also for designing drugs that
can bind to a protein and alter its activities. Solving protein structures experimentally is difficult, time
consuming and expensive, leading to the ever-increasing gap between available sequence data and
available experimental structures. This gap amplifies the critical need for computational approaches
that accurately predict protein structure from amino acid sequences.

Despite the recent advances in computational methods [1, 2, 3, 4, 5], protein structure prediction
remains an unsolved grand challenge. This challenge generally involves two steps: sampling and
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scoring. Sampling describes the generation of candidate models of protein structure given a sequence.
Scoring aims to select the best among the large pool of candidate models where best describes how
close a given model is to the true structure. This latter task of model quality assessment has attracted
the application of a number of deep-learning methods in recent years [6, 7, 8, 9, 10].

Here, we introduce a deep-learning scoring function that assesses model quality given just the atomic
coordinates and without the use of physics-inspired energy terms or other pre-computed features.
Our method has several key characteristics: (1) equivariance to 3D rotations, which allows the
network to recognize structural motifs independent of their orientation, (2) hierarchical layers that
preserve rotation equivariance, allowing the network to identify structural motifs at many scales, (3)
a focus on local interactions at each hierarchical level, reflecting the fact that inter-atomic forces are
predominantly local, and (4) learning directly from atomic coordinates rather than mapping to a grid,
allowing high spatial resolution even for large structures.

Our method shows state-of-the-art results in ranking protein models submitted to recent Critical
Assessment of protein Structure Prediction (CASP) community experiments (CASP11-12) and does
not rely on the availability of additional information, such as multiple sequence alignments.

2 Methods

2.1 Dataset

We train and test our method on candidate models submitted to multiple rounds of CASP, a biennial
community experiment. CASP [11] addresses the protein structure prediction problem by withholding
newly solved experimental structures (referred to as targets) and allowing computational groups
to make predictions (referred to as models). Submitted models are released as sets in two stages
(20 models per target for stage 1, 150 models per target for stage 2) for Model Quality Assessment
(MQA), a specific subcategory of CASP that aims to assess the performance of scoring functions.
Model quality is measured in terms of GDT_TS [12] based on the alignment of native structure and
candidate model. GDT_TS ranges between 0 and 1, with higher GDT_TS value indicating better
model quality.

We mirror the setup of the CASP experiment and split the CASP datasets based on protein target and
release year. We train and validate our method on the set of models submitted to CASP 5-10 (500
targets for training, 58 for validation). For testing, we consider models submitted to stage 2 for CASP
11 (84 targets) and 12 (40 targets). We relaxed the structure of all models with the SCWRL4 software
[13] to improve side-chain conformations prior to feeding the models into our network.

2.2 Architecture

Our network builds on recent neural network architectures that are specifically designed to learn from
3D atomic structures [14, 15]. Figure 1 illustrates the architecture of our network. At its core are a
point-based representation of atoms and multiple layers of rotation-equivariant convolutions. The goal
is to predict a quality score for a given protein model. Each atom has an associated feature vector. At
input this is simply the one-hot encoding of its element type2. We then perform rotation-equivariant
convolutions that result in a new feature vector associated with each atom. The convolution filters of
each layer are constructed based on a truncated series of spherical harmonics (up to rotation order
l = 2), such that the filters are able to recognize structural motifs independent of their orientation or
position in space. Convolutions are performed among a limited set of k-nearest neighbors (k=40)
to account for the fact that the physical laws governing intra-molecular interactions are local. The
subsequent convolution layer outputs features only for the alpha carbon of each amino acid residue.
This subsampling operation aggregates information hierarchically and allows the network to recognize
structural motifs at different scales. We average the alpha carbon feature vectors to obtain a fingerprint
for the entire protein model3. From this fingerprint, we use two dense layers (250 and 150 units,
ReLu activation) to calculate a single scalar quality score.

2We represent carbon, oxygen, nitrogen, and sulfur atoms.
3Instead, we could also choose to aggregate information at the level of a single point using further subsampling

operations (see [15]). The optimal choice of hierarchy is likely application dependent.
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Figure 1: Network architecture Given 3D coordinates and element types of every atom as input, the
network performs rotation-equivariant convolutions over multiple layers. The network first learns
features at the level of every atom before we aggregate information at the level of alpha carbons (a
subset of all atoms) in the next layer. We subsequently average the features over all alpha carbons
to obtain a fingerprint for the entire protein model. This fingerprint is the input to a shallow dense
network that outputs a final scalar score.
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2.3 Training and Evaluation

We formulate the training as a regression task aiming to predict the quality metric GDT_TS for each
model. The Huber loss between the actual and the predicted GDT_TS is used as the loss function.
We train with the Adam optimizer in TensorFlow [16] (learning rate 1.25 · 10−4) and monitor the loss
on the validation set for every epoch. The weights of the best-performing network are then used to
evaluate the predictions on the test set. We use Horovod [17] to distribute training across 4 NVIDIA
Titan X GPUs.

3 Results

3.1 Model quality assessment

We examine our results on model quality assessment, finding that we generally improve upon state-
of-the-art methods (Table 1). We report multiple correlation metrics per method. Global correlation
indicates the correlation between a method’s predictions and the GDT_TS scores of all protein models
in a given set. Per target indicates the correlation with respect to a method’s predictions and the
GDT_TS scores of the protein models for a given target (averaged over all targets). The two measures
provide complementary information about a method’s performance. Good global correlation is
desirable to judge the absolute quality of a set of candidate models. Per target correlation indicates a
method’s ability to distinguish model quality among a set of models for one target (the main scoring
challenge). We report Pearson, Kendall, and Spearman correlation coefficients for both global and per
target correlations. Notably, our method also improves upon ProQ3D [10], which uses information
on related proteins to make its predictions4.

3.2 Visualization of learned embeddings

In Figure 2, we explore whether the network has learned to encode certain structural motifs. We
project the fingerprint (see Figure 1) of each protein model in the test set into a lower-dimensional
space using Principal Component Analysis (PCA). Visual inspection reveals that the fingerprint
contains information on both inter-atomic interactions and secondary protein structure.

4GraphQA can also leverage information on related proteins, but here we compare against the version of
GraphQA that only uses structural information.
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Table 1: Comparison with state-of-the-art methods on CASP 11 and 12 in terms of global and
mean per-target correlation coefficients (higher is better). The different coefficients are Pearson (r),
Spearman (ρ), and Kendall (τ ). The top performing method for each metric is shown in bold.

CASP 11, stage 2 CASP 12, stage 2

Global Per target Global Per target

Method r ρ τ r ρ τ r ρ τ r ρ τ

Ours 0.84 0.84 0.65 0.45 0.43 0.31 0.80 0.79 0.59 0.62 0.55 0.39
3DCNN [6] 0.64 0.69 0.48 0.40 0.39 0.27 0.61 0.64 0.46 0.51 0.45 0.32
Ornate [7] 0.63 0.67 0.48 0.39 0.37 0.26 0.67 0.66 0.47 0.49 0.46 0.32
GraphQA [8] 0.82 0.82 0.62 0.38 0.36 0.25 0.81 0.81 0.62 0.61 0.55 0.40
VoroMQA [18] 0.65 0.69 0.51 0.42 0.41 0.29 0.61 0.60 0.45 0.56 0.50 0.36
SBROD [9] 0.55 0.57 0.39 0.43 0.41 0.29 0.47 0.49 0.34 0.61 0.55 0.40
ProQ3D [10] 0.77 0.80 0.59 0.44 0.43 0.30 0.81 0.80 0.60 0.60 0.54 0.39

In Figure 2A, we consider the prevalence of van der Waals interactions in each protein model. We
use the software GetContacts [19] to identify van der Waals interactions and divide the total number
of interactions by the number of amino acid residues per model. We note that protein models cluster
based on the prevalence of van der Waals interactions in the plane of principal component (PC) 5 and
PC 1. In Figure 2B, we consider the prevalence of alpha helices in a given protein model. We use
DSSP [20] to assign each residue in a protein model to one type of secondary structure (’alpha helix’,
’beta sheet’ or ’other’). We then calculate the fraction of ’alpha helix’ residues over all residues in a
model. Models cluster based on this fraction when plotted based on PC 4 and PC 7.
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Figure 2: PCA projections of learned fingerprints. PCA projections of the protein model finger-
prints reveal their encoding of structural motifs. (A) shows clustering of the protein models based on
the number of van der Waals interactions per residue. All models with 15 or more interactions per
residue are shown in the same bright yellow color. (B) shows the fraction of residues within each
protein model that is part of an alpha helix.

4 Discussion

In this work, we presented a hierarchical deep-learning method to assess the quality of candidate
models of protein structure. Our method learns end-to-end from the 3D atomic coordinates of protein
models without the use of any physics-inspired or statistical energy terms. Thanks to the rotation
equivariance of the network filters, the orientation in which motifs and models are presented to the
network does not matter.

Our results on the CASP datasets indicate improved global and per-target GDT_TS correlations
compared to previous approaches, including approaches that use additional information such as
multiple-sequence alignments.

The fact that our network learns to predict a quality score given solely the atomic coordinates of a
single protein model makes it suitable to guide sampling in protein structure modelling algorithms
such as Rosetta [21], which we leave as future work.
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[12] A. Zemla, Č. Venclovas et al., Processing and evaluation of predictions in casp4, Proteins:
Structure, Function, and Bioinformatics 45, 13 (2001).

[13] G. G. Krivov, M. V. Shapovalov and R. L. Dunbrack Jr, Improved prediction of protein side-
chain conformations with scwrl4, Proteins: Structure, Function, and Bioinformatics 77, 778
(2009).

[14] N. Thomas, T. Smidt et al., Tensor field networks: Rotation-and translation-equivariant neural
networks for 3d point clouds, arXiv preprint arXiv:1802.08219 (2018).

[15] S. Eismann, R. J. Townshend et al., Hierarchical, rotation-equivariant neural networks to predict
the structure of protein complexes, arXiv preprint arXiv:2006.09275 (2020).

[16] M. Abadi, A. Agarwal et al., TensorFlow: Large-scale machine learning on heterogeneous
systems (2015), Software available from tensorflow.org.

[17] A. Sergeev and M. D. Balso, Horovod: fast and easy distributed deep learning in TensorFlow,
arXiv preprint arXiv:1802.05799 (2018).
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