
Learning from Protein Structure with Geometric
Vector Perceptrons

Bowen Jing∗
Department of Computer Science

Stanford University
bjing@stanford.edu

Stephan Eismann∗
Department of Applied Physics

Stanford University
seismann@stanford.edu

Patricia Suriana
Department of Computer Science

Stanford University
psuriana@stanford.edu

Raphael J.L. Townshend
Department of Computer Science

Stanford University
raphael@cs.stanford.edu

Ron O. Dror
Department of Computer Science

Stanford University
rondror@cs.stanford.edu

Abstract

Learning on 3D structures of large biomolecules is emerging as a distinct area
in machine learning, but there has yet to emerge a unifying network architecture
that simultaneously leverages the geometric and relational aspects of the problem
domain. To address this gap, we introduce geometric vector perceptrons, which
replace standard dense layers to operate on collections of Euclidean vectors. Graph
neural networks equipped with such layers are able to perform both geometric
and relational reasoning on efficient representations of macromolecular structure.
We demonstrate our approach on computational protein design and improve over
state-of-the-art methods, achieving a perplexity of 5.29 on CATH 4.2.

1 Introduction

Many efforts in structural biology aim to predict, or derive insights from, the structure of a macro-
molecule (such as a protein, RNA, or DNA), represented as a set of positions associated with atoms
or groups of atoms in 3D Euclidean space. These problems can often be framed as functions mapping
the input domain of structures to some property of interest—for example, predicting the quality of
a structural model or determining whether two molecules will bind. Thanks to their importance
and difficulty, such problems, which we broadly refer to as learning from structure, have recently
developed into an exciting and promising application area for deep learning [8, 10, 14, 15, 18].

Successful applications of deep learning are often driven by techniques that leverage the problem
structure of the domain—for example, convolutions in computer vision [5] and attention in natural
language processing [16]. What are the relevant considerations in the domain of learning from
structure? Using proteins as the most common example, we have on the one hand the arrangement
and orientation of the amino acids in space, which govern the dynamics and function of the molecule
[4]. On the other hand, proteins also possess relational structure in terms of their amino-acid sequence
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and the residue-residue interactions that mediate the aforementioned protein properties [9]. We refer
to these as the geometric and relational aspects of the problem domain, respectively.

Recent state-of-the-art methods for learning from structure are successful by leveraging one of these
two aspects [7, 13, 1, 19, 2, 10]. Commonly, such methods either employ graph neural networks
(GNNs), which are expressive in terms of relational reasoning [3], or convolutional neural networks
(CNNs), which operate directly on the geometry of the structure.

Here, we present a unifying architecture that bridges these two families of methods to leverage both
aspects of the problem domain. We do so by introducing geometric vector perceptrons (GVPs), a drop-
in replacement for standard multi-layer perceptrons (MLPs) in aggregation and feed-forward layers
of GNNs. GVPs operate directly on both scalar and geometric features—features that transform
as a vector under a rotation of spatial coordinates. GVPs therefore allow for the embedding of
geometric information at nodes and edges without reducing such information to scalars that may not
fully capture complex geometry. We postulate that our approach makes it easier for a GNN to learn
functions whose significant features are both geometric and relational.

Our method (GVP-GNN) can be applied to any problem where the input domain is a structure of a
single macromolecule or of molecules bound to one another. In this work, we specifically demonstrate
our appproach on computational protein design (CPD): given a protein backbone structure, we attempt
to infer an amino acid sequence which will fold into that structure.

2 Methods

Previous GNN architectures for learning from protein structure incorporate the 3D geometry of
the protein by encoding vector features (such as node orientations and edge directions) in terms of
rotation-invariant scalars, often by defining a local coordinate system at each node [10]. We instead
propose that these features be directly represented as geometric vectors—features in a global R3

coordinate system—at all steps of graph propagation. This allows geometric features to be directly
propagated without transforming between local coordinates, which we postulate enables the GNN
to more easily access global geometric properties of the structure. The key challenge with such a
representation, however, is to perform graph propagation in a way that simultaneously preserves the
full expressive power of the original GNN while maintaining the rotation invariance provided by the
scalar representations. We do so by introducing a new module, the geometric vector perceptron, to
replace dense layers in a GNN.

Geometric Vector Perceptrons The geometric vector perceptron is a simple module for learning
vector-valued and scalar-valued functions over geometric vectors and scalars. That is, given a
tuple (s,V) of scalar features s ∈ Rn and vector features V ∈ Rν×3, it computes new features
(s′,V′) ∈ Rm × Rµ×3. The computation is formally described in Algorithm 1 and illustrated in
Figure 1.

At its core, the GVP consists of two separate linear transformations Wm,Wh for the scalar and vector
features, followed by nonlinearities σ, σ+.2 However, before the scalar features are transformed, we
concatenate the L2 norm of the transformed vector features Vh; this allows us to extract rotation-
invariant information from the input vectors V. An additional linear transformation Wµ is inserted
just before the vector nonlinearity to control the output dimensionality independently of the number
of norms extracted.

The GVP is conceptually simple, yet provably possesses the desired properties of invari-
ance/equivariance and expressiveness. First, the vector and scalar outputs of the GVP are equivariant
and invariant, respectively, with respect to an arbitrary composition of rotations and reflections in 3D
Euclidean space described by R i.e.,

GVP((s, R(V))) = (s′, R(V′)) (1)

This is due to the fact that the only operations on vector-valued inputs are scalar multiplication, linear
combination, and the L2 norm.3 We include a formal proof in the Appendix.

2We specifically choose ReLU and sigmoid, respectively.
3The nonlinearity σ+ is a scaling by σ+ applied to the L2 norm.
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In addition, a GVP can approximate any continuous rotation- and reflection-invariant scalar-valued
function of V. More precisely, let Gs be a GVP defined with n, µ = 0—that is, the part of a
GVP that transforms vector features to scalar features. Then Gs is able to ε-approximate a function
F : Rν×3 → R that is invariant with respect to rotations and reflections in 3D under mild assumptions.

Theorem. Let R describe an arbitrary rotation or reflection in R3. For ν ≥ 3 let Ων ⊂ Rν×3 be
the set of all V = [v1, . . . , vν ]

T ∈ Rν×3 such that v1,v2,v3 are linearly independent and
0 < ||vi||2 ≤ b for all i and some finite b > 0. Then for any continuous F : Ων → R such
that F (R(V)) = F (V) and for any ε > 0, there exists a form f(V) = wTGs(V) such that
|F (V)− f(V)| < ε for all V ∈ Ων .

We include a formal proof in the Appendix. As a corollary, a GVP with nonzero n, µ is also able to
approximate similarly-defined functions over the full input domain Rn × Rν×3.

Algorithm 1 Geometric vector perceptron
Input: Features (s,V) ∈ Rn × Rν×3 .
Output: Features (s′,V′) ∈ Rm × Rµ×3 .
h← max (ν, µ)
GVP:

Vh ←WhV ∈ Rh×3
Vµ ←WµVh ∈ Rµ×3
sh ← ‖Vh‖2 (row-wise) ∈ Rh
vµ ← ‖Vµ‖2 (row-wise) ∈ Rµ
sh+n ← concat (sh, s) ∈ Rh+n
sm ←Wmsh+n + b ∈ Rm
s′ ← σ (sm) ∈ Rm
V′ ← σ+ (vµ)�Vµ, (row-wise multiply) ∈ Rµ×3

return (s′,V′) Figure 1: Schematic of the geometric
vector perceptron.

Representations of Proteins A GVP-augmented GNN (GVP-GNN) can operate on and update
graphs whose embeddings contain both vector and scalar features. Here we show how a 3D protein
backbone structure can be efficiently represented in such a graph.

Let G = (V, E) be a graph where each node vi ∈ V corresponds to an amino acid. Each node
embedding h

(i)
v has vector features corresponding to the forward and reverse unit vectors in the

directions of Cαi+1 −Cαi and Cαi−1 −Cαi, respectively, and a unit vector in the imputed direction
of Cβi − Cαi.4 These three vectors unambiguously define the absolute orientation of each amino
acid residue. Each node embedding also has scalar features encoding the dihedral angles φ, ψ, ω.

Let the set of edges be E = {ei→j}i 6=j for all i, j where vi is among the k = 30 nearest neighbors of
vj as measured by the distance between their Cα atoms. Each edge has an embedding h

(i→j)
e with the

unit vector in the direction of Cαi−Cαj , a radial basis encoding of the distance RBF(||Cαi−Cαj ||2),
and a sinusoidal encoding of i− j (the distance along the sequence).

Collectively, these features are sufficient for a complete description of the protein backbone.

3 Experiments

Synthetic Tasks We first perform controlled experiments on a synthetic dataset to investigate if the
GVP indeed improves the geometric and joint geometric-relational reasoning abilities of GNNs. This
dataset mimics the essential qualities of the domain of protein structures: each synthetic "structure"
consists of n = 100 random points in R3 in the ball of radius r = 10, each associated with a random
unit vector in order to endow it with an orientation. Three random points in each structure are labelled
as "special" to define the learning tasks.

4Cβ is the second carbon from the carboxyl carbon C.
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We choose ground-truth labels in order to explicitly separate geometric and relational aspects in
different tasks. In the "Off-center" task, the network predicts the distance from the centroid of the
three special points to the centroid of the entire structure. In the "Perimeter" task, the network
predicts the perimeter of the triangle defined by the three special points. We characterize the former
as primarily geometric, as it requires reasoning about global properties of the 3D shape, and the latter
as primarily relational, as it involves distances between three pairs of nodes. In the "Combined" task,
the networks predicts the difference of the (normalized) off-center and perimeter objectives.

We compare a 3-layer CNN, a 3-layer standard GNN, and a GVP-GNN that is otherwise identical
to the standard GNN on these three tasks. All models have the same intermediate dimensionality
and training procedure; no hyperparameter tuning or architecture search is performed. For each of
five randomly shuffled splits, we train three models of each type with different initialization seeds
and take the ones with the best validation loss. As expected, the CNN significantly outperforms the
standard GNN on the geometric task, and vice versa for the relational task. The GVP-GNN, however,
simultaneously matches the CNN on the geometric task and the standard GNN on the relational task.
Further, when we combine the two tasks in one objective, the GVP-GNN does significantly better
than either the standard GNN or the CNN (Table 1). On the basis of these results, the GVP appears
successful in combining the strengths of the CNN and GNN into a single architecture.

Table 1: Comparison of the CNN, standard GNN, and GVP-GNN on the three objectives on the
synthetic test set. The MSE losses are standardized such that predicting a constant value (i.e. the
mean) would result in unit loss. Results are reported as the mean ± S.D. over five randomly shuffled
splits.

Model Parameters Off-center (geometric) Perimeter (relational) Combined

CNN 59k 0.319 ± 0.014 0.532 ± 0.028 0.522 ± 0.016
Standard GNN 40k 0.871 ± 0.045 0.128 ± 0.009 0.421 ± 0.025
GVP-GNN 22k 0.206 ± 0.024 0.106 ± 0.006 0.155 ± 0.024

Computational Protein Design Next, we evaluate GVP-GNN on the real-world task of compu-
tational protein design (CPD). This corresponds to learning amino acid sequences from protein
backbone structures and can be formalized as learning a generative model for p(sequence | structure).
Following Ingraham et al. [10], we frame this as an autoregressive task and use a masked encoder-
decoder architecture to capture the joint distribution over all positions: for each position i, the network
models the amino acid distribution at i based on the complete structure graph, as well as the sequence
information at positions j < i.

We use the CATH 4.2 dataset curated by Ingraham et al. [10], in which all available structures with
40% nonredudancy are partitioned by their CATH (class, architecture, topology/fold, homologous
superfamily) classification. Because CPD is difficult to ambiguously benchmark (some structures
may correspond to many sequences and others to none at all), the proxy metric of native sequence
recovery—splitting the set of all known native structures in the PDB and attempting to design
sequences for held-out structures—is typically used [11, 12, 17]. Drawing an analogy between
sequence design and language modelling, Ingraham et al. [10] also evaluate the model perplexity on
held-out native sequences. We evaluate our model on both metrics.

Table 2: Performance on the CATH 4.2 test set and its short (< 100 amino acids) and single-chain
subsets in terms of per-residue perplexity (lower is better) and sequence recovery (higher is better).
Recovery is reported as the median over all structures of the mean recovery of 100 sequences per
structure. The short, single-chain, and full test sets include 94, 103, and 1120 structures, respectively.

Perplexity Recovery %

Method Short Single-chain All Short Single-chain All

GVP-GNN (ours) 7.10 7.44 5.29 32.1 32.0 40.2
Structured GNN 8.31 8.88 6.55 28.4 28.1 37.3
Structured Transformer 8.54 9.03 6.85 28.3 27.6 36.4
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Our method achieves state-of-the-art performance on CATH 4.2. We substantially improve both in
terms of perplexity and recovery over Structured Transformer [10], the previous state-of-the-art, as
well as an improved variant of it (Structured GNN) in which the attention mechanism is replaced
with standard graph propagation (Table 2). Additionally, our model achieves this performance with
fewer parameters—1.01M compared to 1.38M / 1.53M in Structured GNN / Transformer.

4 Conclusion

In this work, we developed the first architecture designed specifically for learning on dual relational
and geometric representations of 3D macromolecular structure. At its core, our method, GVP-
GNN, augments graph neural networks with computationally simple layers that perform expressive
geometric reasoning over Euclidean vector features. Our method possesses desirable theoretical
properties and empirically outperforms existing architectures on learning sequence designs from
protein structure. In further work, we hope to apply our architecture to other important structural
biology problem areas, including protein complexes, RNA structure, and protein-ligand interactions.

Code

An implementation of the GVP will be made available at https://github.com/drorlab/gvp.
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Properties of Geometric Vector Perceptrons

Equivariance and invariance

The vector and scalar outputs of the GVP are equivariant and invariant, respectively, with respect to
an arbitrary composition of rotations and reflections in 3D Euclidean space described by R i.e.,

GVP((s, R(V))) = (s′, R(V′))

Proof. We can write the transformation described by R as multiplying V with a unitary matrix
U ∈ R3×3 from the right. The L2-norm, scalar multiplications, and nonlinearities are defined
row-wise as in Algorithm 1. We consider scalar and vector outputs separately. The scalar output, as a
function of the inputs, is

s′ = σ

(
Wm

[
‖WhV‖2

s

]
+ b

)
Since ‖WhVU‖2 = ‖WhV‖2, we conclude s′ is invariant. Similarly the vector output is

V′ = σ+
(
‖WµWhV‖2

)
�WµWhV

The row-wise scaling can also be viewed as left-multiplication by a diagonal matrix D. Since
‖WµWhV‖2 = ‖WµWhVU‖2, D is invariant. Since

DWµWh(VU) = (DWµWhV)U

we conclude that V′ is equivariant.
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The ability to approximate rotation-invariant functions

The GVP inherits an analogue of the Universal Approximation property [6] of standard dense layers.
If R describes an arbitrary rotation or reflection in 3D Euclidean space,5 we show that a GVP
can approximate arbitrary scalar-valued functions invariant under R and defined over Ων ⊂ Rν×3,
the bounded subset of Rν×3 whose elements can be canonically oriented based on three linearly
independent vector entries. Without loss of generality, we assume the first three vector entries can be
used.

The machinery corresponding to such approximations corresponds to a GVP Gs with only vector
inputs, only scalar outputs, and a sigmoidal nonlinearity σ; followed by a dense layer. This can
also be viewed as the sequence of matrix multiplication with Wh, taking the L2-norm, and a dense
network with one hidden layer. Such machinery can be extracted from any two consecutive GVPs
(assuming a sigmoidal σ).
Theorem. Let R describe an arbitrary rotation or reflection in R3. For ν ≥ 3 let Ων ⊂ Rν×3 be
the set of all V = [v1, . . . , vν ]

T ∈ Rν×3 such that v1,v2,v3 are linearly independent and
0 < ‖vi‖2 ≤ b for all i and some finite b > 0. Then for any continuous F : Ων → R such
that F (R(V)) = F (V) and for any ε > 0, there exists a form f(V) = wTGs(V) such that
|F (V)− f(V)| < ε for all V ∈ Ω.

Proof. The idea is to write F as a composition F = F̃ ◦ω and ω = h◦y. We show that multiplication
with Wh and and taking the L2-norm can compute y, and that the dense network with one hidden
layer can approximate F̃ ◦ h.

Call an element V ∈ Ων oriented if v1 = x1ex, v2 = x2ex + y2ey , and v3 = x3ex + y3ey + z3ez ,
with x1, y2, z3 > 0. Define ω : Ων → R3ν−3 to be the orientation function that orients its input
and then extracts the vector of 3ν − 3 coefficients, [x1, x2, y2, x3, y3, z3, . . . , xi, yi, zi, . . .]

T . These
elements can be written as

x1 = ‖v1‖2
xi = vi · v1/x1, i ≥ 2

y2 =

√
‖v2‖22 − x22

yi = (vi · v2 − xix2)/y2, i ≥ 3

z3 =

√
‖v3‖22 − x23 − y23

zi = (vi · v3 − xix3 − yiy3)/z3, i ≥ 4

and are invariant under rotation and reflection, because they are defined using only the norms and
inner products of the vi. Then F = F̃ ◦ ω, where F̃ : [−b, b]3ν−3 → R.

The key insight is that if we construct Wh such that the rows of WhV are the original vectors vi,∀i
and all differences vi − vj ,∀i, j ≤ min(i, 3), then we can compute ω(V) from the row-wise norms
of WhV. That is, ω = h ◦ y where y = y(V) = ‖.‖2� (WhV) ∈ R4ν−6 and h is an application of
the cosine law. The GVP precisely computes y as an intermediate step: Gs(V) = σ � (Wmy + b).
It remains to show that there exists a form f̃(y) = wT [σ � (Why + b)] that ε-approximates
F̃ ◦ h : [−2b, 2b]4ν−6 → R. Up to a translation and uniform scaling of the hypercube, this is the
result of the Universal Approximation Theorem [6].

5More precisely, if R describes a unitary transformation.
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