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Abstract

Lipophilicity is one of the factors determining the permeability of the cell mem-
brane to a drug molecule. Hence, accurate lipophilicity prediction is an essential
step in the development of new drugs. In this paper, we introduce a novel approach
to encoding additional graph information by extracting molecular substructures. By
adding a set of generalized atomic features of these substructures to an established
Direct Message Passing Neural Network (D-MPNN) we were able to achieve a new
state-of-the-art result at the task of prediction of two main lipophilicity coefficients,
namely logP and logD descriptors. We further improve our approach by employing
a multitask approach to predict logP and logD values simultaneously. Addition-
ally, we present a study of the model performance on symmetric and asymmetric
molecules, that may yield insight for further research.

1 Introduction

Molecular property prediction is one of the fundamental issues in chemoinformatics. It is vital for
many applications in chemistry and drug discovery [16, 18]. This paper focuses on the prediction
of lipophilicity, a compound’s ability to dissolve in fats, oils, and lipids. Lipophilicity is a key
physical property for developing small molecule drugs since it reflects the ability of a drug molecule
to permeate cell membranes. It is represented by the descriptors logP (the partition coefficient) and
logD (the distribution coefficient).

Most of the current state-of-the-art approaches employ the techniques of deep learning. These models
solve two sub-tasks: representing a molecule with an appropriate numerical vector and predicting
target property for this vector. A combination of trainable molecules’ representations with simple
regression algorithms as molecular properties predictors demonstrates the most promising results
according to the current state of the field.

The standard approach to molecular representations is based on molecular fingerprints, which have
limited adaptability to a specific task [14].

Recently, many promising methods for generating molecule representations have been based on
graph representation learning. The growth of the field started with Graph Convolutional Networks
[6, 10, 13, 11, 17], which enabled convolutional neural networks to operate directly on graphs. Among
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other methods, one of the most popular is Message Passing Neural Networks [7, 18]. For example,
the JtVAE model [9] uses the MPNN approach to split the molecular graph into valid chemical
substructures. PAGTN model [4] uses path features in molecular graphs to create global attention
layers. OT-GNN [3], the current state-of-the-art approach for the lipophilicity dataset, computes
graph embeddings from optimal transport distances between the set of GNN node embeddings and
“prototype” point clouds as free parameters.

In this paper, we improved the current state-of-the-art result for the prediction of logP/logD properties
by introducing a novel approach for substructures representation in molecular graphs and by the
application of multitask learning.

2 StructGNN

Figure 1 shows the overall network architecture of our method named StructGNN. The model consists
of two parallel encoders. The first one is a D-MPNN encoder, which creates a molecular embedding
hd through passing edge-focused messages. For a detailed description of the D-MPNN encoder, we
refer the reader to the original paper [18].

Figure 1: The overall architecture of our StructGNN approach.

The second encoder takes in generalized features of extracted substructures and produces embedding
hs via the feed-forward neural network (FFNN) and then averaging. We describe this process in
detail in Section 2.1.

StructGNN concatenates both embeddings to produce the final molecular vector embedding. This
vector could be used with different regression models in order to predict molecular properties. In this
paper, we feed it into two layers of fully connected neural network that outputs the final prediction.
For the loss function, we use a standard Root Mean Square Error (RMSE) loss.

2.1 Substructure encoder

Substructure encoder considers the molecule’s functional groups, namely rings, acids, amines, esters,
and sulfonamides. The encoder represents these groups as hyper-atoms. Both hyper-atoms and
atoms form a set of nodes for a particular molecule. We approach them as a set rather than a graph
because our experiments have shown that introducing connections between nodes does not improve
the model’s performance.

We encode each node in the set with a feature vector. We construct features for hyper-atoms by
generalizing the features of atoms, originally used in D-MPNN model. Our substructure encoder
doesn’t create new chemical features, but rather generalizes existing atom’s features in order to
incorporate the information about the molecule’s functional groups. Table 1 shows the list of all used
features.
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Table 1: Features for atoms and hyper-atoms

Atom’s feature Hyper-atom’s feature
Atom type Number of each atom type in substructure
Number of bonds Number of substructure’s internal edges
Formal charge Substructure formal charge
Chirality Number of hydrogen atoms
Number of Hs Substructure’s aromaticity
Hybridization Sum of atomic masses
Aromaticity Substructure’s external valence
Atomic mass One-hot encoding for the substructure type

Table 2: Data sources

LogP Dataset Size (number of samples)
PhysProp [1] 13553
NCI Open Database Compounds [5] 2534
OChem [15] 773
DiverseDataset [12] 707

17318 in total

logD Dataset Size (number of samples)
lipophilicity [8] 4200

The feature vector for every node is passed through a one-layer feed-forward neural network. Finally,
we average all resulting vectors to produce a single embedding hs for the whole molecule.

2.2 Multitask learning

We also use multitask learning to predict logP and logD values. Multitask learning aims to improve
predictions by solving multiple tasks simultaneously. While logP is used for non-ionizable compounds
or the neutral form of ionizable compounds, and logD is used for ionizable compounds, there is an
obvious similarity between the two. The Pearson Correlation Coefficient between logP and logD
values is 0.66, so we consider descriptors as different targets despite their similarity.

We introduce a new loss function that balances between learning logP and logD properties. If there is
only one known value for a molecule (either logP or logD), we calculate the standard RMSE loss
function for that values while ignoring the other one. If both values are present, we use mean RMSE
between logP and logD errors.

3 Experiments

We used a combined dataset of experimental logP and logD values from sources, listed in Table 2.
Data preparation includes SMILES standardization and duplicates removal. The resulting logP and
logD datasets contain 13688 and 4166 unique SMILES, respectively. For multitask learning, we
merged two datasets and obtained 17603 unique SMILES with logP or logD values. Among them,
251 molecules have both logP and logD values.

In our experiments, we compare a set of different models to create molecules’ representations for
logP/logD prediction. For a fair comparison, we use the same two layers of fully connected neural
network as a regression model that takes in that generated representation vector. Our evaluation
includes circular fingerprints [14] as a baseline method and OT-GNN as the current state-of-the-art
approach. We also compare StructGNN with D-MPNN, as it was our base method for improvements,
and JtVAE, as it also uses the idea of substructure encoding.

D-MPNN model originally uses an additional vector of 200 global molecular features from RDKit [2].
This approach helps the model to capture global features, while message-passing is fundamentally
local in nature [18]. We followed this approach and used RDKit features in all experiments with
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Table 3: Results of different models on the lipophilicity descriptors prediction

Model logP (RMSE) logP (R2) logD (RMSE) logD (R2)
Morgan Fingerprints 0.572+/-0.001 0.903+/-0.001 0.775+/-0.022 0.585+/-0.023
JtVAE 0.511+/-0.009 0.922+/-0.003 0.640+/-0.016 0.712+/-0.015
OTGNN 0.508+/-0.016 0.923+/-0.005 0.735+/-0.114 0.617+/-0.124
D-MPNN 0.464+/-0.002 0.936+/-0.001 0.601+/-0.008 0.749+/-0.007
StructGNN 0.453+/-0.004 0.939+/-0.001 0.591+/-0.014 0.758+/-0.012
D-MPNN+Multitask 0.442+/-0.004 0.944+/-0.001 0.554+/-0.004 0.805+/-0.003
StructGNN+Multitask 0.425+/-0.005 0.948+/-0.001 0.537+/-0.008 0.817+/-0.006

Table 4: Results of different models on the lipophilicity descriptors predictions for the symmetric and
asymmetric molecules

Model logP (RMSE) logD (RMSE)
symmetric asymmetric symmetric asymmetric
molecules molecules molecules molecules
608 in total 1380 in total 33 in total 4133 in total

Morgan Fingerprints 0.823+/-0.021 0.561+/-0.001 1.322+/-0.200 0.767+/-0.018
JtVAE 0.677+/-0.048 0.504+/-0.008 0.953+/-0.186 0.636+/-0.014
OTGNN 0.797+/-0.056 0.495+/-0.016 1.025+/-0.125 0.731+/-0.116
D-MPNN 0.722+/-0.063 0.437+/-0.005 0.846+/-0.133 0.598+/-0.007
StructGNN 0.671+/-0.017 0.443+/-0.006 1.113+/-0.147 0.584+/-0.013
D-MPNN+Multitask 0.539+/-0.021 0.421+/-0.012 0.458+/-0.132 0.536+/-0.016
StructGNN+Multitask 0.541+/-0.005 0.419+/-0.006 0.367+/-0.113 0.538+/-0.008

D-MPNN and StructGNN models. We used all original features, except MolLogP, as it is calculated
logP value from another algorithm. For the StructGNN model, we also excluded structural features,
as they are mirrored by generalized hyper-atoms’ features.

We optimized the hyperparameters of every model 4 times on different 25% validation datasets and
then measured the performance on a 20% test dataset. Table 3 shows the average RMSE results. Our
method achieves new state-of-the-art results in both predicting logP and logD values.

We also analyzed models’ errors depending on the molecule’s symmetry. To distinguish between
symmetric and asymmetric molecules, we used canonical atom ranking [2]. We’ve found out that all
of the approaches had poor scores for the symmetric compounds, although our model improved the
results significantly, as demonstrated in Table 4.

4 Conclusion

We have proposed StructGNN, an extension of the D-MPNN architecture, that encodes additional
graph information by extracting molecules’ substructures. Our model shows new state-of-the-art
results in lipophilicity prediction tasks for logP and logD targets.

We have further enhanced the performance of the model by applying the multitask approach by
training the model to predict logP and logD targets simultaneously.

Finally, we analyzed predictions for symmetric and asymmetric molecules of all studied models. We
show that all models struggle with symmetric molecules and no single model outperforms others
both in logP and logD prediction for these molecules. Studies in underlying principles that lead to
the disparity between the two can lead to further improvement.

The source code of our model is available at https://github.com/jbr-ai-labs/
lipophilicity-prediction.
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