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Abstract

The crux of molecular property prediction is to conduct meaningful and informative
representations of the molecules. We propose Multi-View Graph Neural Networks
(MVGNN), a multi-view architecture for generating accurate molecular property
prediction by utilizing both atoms and bonds information simultaneously. A shared
self-attentive readout and disagreement loss are designed to stabilize the training
process and enhance the interactions between the multi-views. The visualization of
the designed self-attentive readout component also provides the interpretability for
the prediction results, which is crucial for real-world applications like molecular
design and drug discovery. Extensive experiments on 11 datasets demonstrate the
superiority and effectiveness of the proposed MVGNN model.

1 Introduction

To date, Graph Neural Networks (GNN) have gained more and more attention due to its capability of
dealing with graph structured data. Molecular property prediction is also a promising application
of GNN since a molecule could be represented as a graph structure by treating atoms as nodes, and
bonds as edges. Despite the fruitful results obtained by GNN, there remains two limitations for
current GNN models when applying them to molecular property prediction: 1) Most of the GNN
models only focus on the embedding of nodes. It is truthful that nodes play an dominant role in
many graph-based scenarios including social network [29, 11], recommendation system [17, 20],
knowledge-graphs [8, 9], and so on. However, in some cases, nodes and edges play the equally
important roles. Especially, molecular property prediction also demands information from both atoms
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Figure 1: Overview of the proposed MVGNN architecture.

and bonds to generate precise graph embedding and make accurate prediction. Therefore, how fo
properly integrate both node and edge information in a single model is the first challenging issue. 2)
the second limitation is the interpretability of the models. It is no doubt that interpretability power is
very important for drug discovery. Understanding how the underlying model works will also help
people figure out the key components for determining certain properties[21]. Consequently, how to
provide the explanation of the prediction results is the second challenging issue.

To address those challenges, we believe that a fresh perspective of viewing the graph from two aspects
covering both nodes and edges would be more meaningful and precise. In this paper, we take the
Message Passing Neural Network (MPNN) [7] as the backbone!, and propose a new architecture:
MVGNN based on the popularity of multi-view learning, which considers the diversity of different
aspects for one single target [28].

2 Preliminaries on Molecular Graph Representations

An essential preliminary is to represent a molecule to a graph representation, and extract the initial
features. We view a molecule c as a graph G, = (V, £), where |V| = p refers to a set of p nodes
(atoms) in the molecule and |£| = q refers to a set of ¢ edges (bonds) in the molecule satisfying
(vi,vj) € €. N, represents the neighborhood set of node v in the graph. We denote the features of
node v as @, € R4 and the features of edge (v, k) as e, € Rée 2 where d,, and d, refer to the
feature dimension of nodes and edges, respectively. One possible node feature and edge feature are
the initial chemical relevant features such as atomic mass and bond type. Please refer to Appendix A
for more detailed feature extraction process. We denote a property vy as the target of the predictive
task, which are either binary values for classification tasks or real values for regression tasks depends
on the property type. Therefore, the molecular property prediction problem can be formulated as:

Definition 2.1. Given a molecule ¢ and its graph G, molecular property prediction aims to predict
the property y. according to the graph representation &, that is mapped from G..

3 Multi-View Graph Neural Network (MVGNN)

MVGNN considers atom features and bond features equally important for constituting a molecular
representation vector based on its graph structure. As demonstrated in Figure 1, MVGNN architecture
contains two concurrent phases, Node-central Encoder and Edge-central Encoder, which are
responsible for generating node/edge embedding matrix from the graph topology and the node/edge
features. Here, we employ the message passing neural network[7], which has achieved remarkable
success in modeling molecules, as the backbone to design Node-central Encoder and Edge-central
Encoder, respectively. Next, MVGNN adopts self-attentive aggregation to learn the different
weights of each embedding to produce the graph embedding. Furthermore, we share the self-
attentive aggregation layer between Node-central Encoder and Edge-central Encoder to reinforce the
learning of node information and edge information, respectively. After the self-attentive aggregation,
MVGNN feeds the graph embeddings from Node-central Encoder and Edge-central Encoder to two
independent fully connected (FC) layers to fit a loss function depending on the concrete prediction task,

"Here, the backbone can be any valid GNNs depending on the applications
2Without ambiguous, e, can represent either the edge or the edge features.



respectively. To stabilize the training process of this dual architecture, we employ a Disagreement
Loss to enforce the outputs of two fully connected layer similar with each other.

3.1 Node-central and Edge-central Encoders

The message passing neural network (MPNN) is originally proposed in [7], which can be viewed
as the simulation of information diffusion in graphs. Specially, it aggregates and passes the feature
information of corresponding neighbor nodes to produce the new embeddings. Taking MPNN as
the backbone, we define the Node-central and Edge-central Encoders, respectively. Specifically, the
Node-MPN in the node-central encoder is defined as follows:

m{™ = Y CONCAT(R{),h{!),e,n), hIT) = o(Wheaern( ™) + B(V), (1)
uEN,

where h") = o (Whin,) is the input state of Node-MPN, and W, € R%i¢*dn ig the input weight
matrix with an input dimension, dy;q. The messaging passing process in Node-MPN contains L steps.
At + 1 step, Node-MPN updates the state of node v by aggregating the previous state of its neighbor
node u € N,, as well as itself, and takes the corresponding edge features e, as attached features
to generate the new state of node v. Here Wyqe € R%ia*(detdia) s the weight matrix shared in all
steps and o (-) is the activation function’.

After L step message passing, we utilize an additional message passing step (Node-Node Transfer in
Figure 1) with different weight matrix Wioy € R%ux(detdio) to produce the final node embedding:

my = Y CONCAT(h" z1) hS = o(Woums). )

keN,
By adding this additional message passing process, we can introduce more parameters as well as the
non-linearity to enhance the description power of Node-MPN. We denote H,, = [hY,- -, h;} €

R%uxP a5 the output embeddings of Node-MPN, where d, is the dimension of output embedding.

Refer to the line graph L(G) of graph G in graph theory[10], the nodes can be viewed as the
connections while edges can be viewed as entities. Therefore, it’s possible to performing the message
passing through edges to imitate Node-MPN on L(G). Namely, given a edge (v, w), The Edge-based
MPNN (Edge-MPN) in the edge-central encoder is formulated as:

m{ = 3" CONCAT(A(),h{) ) A =o(Weem{iV +h0), 3

vw vws Puv?
ueN,\w

where hE,O) = 0(Weneyy) is the input state of Edge-MPN. W;, € R%a*de is the input weight
matrix. In (3), the state vector is defined on edge e,,, and the neighbor edge set of e,,, is defined by
all edges connected to the start node v except node w. The attached features are the node features xy.
The message passing and state update phase is similar with Node-MPN. Edge-MPN also contains L
steps, and one more round message passing on nodes is employed to transform edge-wise embedding
to node-wise (Edge-Node Transfer in Figure 1), and generate another node embedding:

my = Y CONCAT(h{Y,@i) hS = o(Weums), “)
kEN,

where Weoy € R (dntdia) jg the weight matrix. Therefore, the final output of Edge-MPN is
represented as H, =[RS, -+, h9] € RbwxP,

3.2 The Self-attentive Readout for Graph-level Embedding

To obtain the graph representation with fixed length, a readout transformation is needed to eliminate
the obstacle of node size variance and permutation variance. Here, we employ the self-attention
mechanism, which is introduced in [29, 15], to learn the node importance as well as encode node
embedding into a size-invariant graph embedding vector. Namely, given the output of Node-central
Encoder H,, € Rut*P_the self-attention readout over nodes is defined as:

S = softmax (W tanh (W1 H,,)), &, = Flatten(SH,), ®)

3Without any specification, we use ReLU as the activation function by default.



where € R Xdon gnd W, € R"*%m are learnable matrices, which are shared between two sub-
models to enable the feature information binding and communicating during the multi-view training
process. Based on the obtained self-attention S, the size invariant and node importance involved
graph embedding & is generated. Furthermore, this self-attentive readout can bring the interpretability
of MVGNN as it indicates the contributions of the nodes for the downstream tasks.

3.3 The Loss of MVGNN

We feed the graph embeddings obtained from Node-central and Edge-central Encoders &,, and &, into
two distinct fully connected neural networks to obtain the predictions of two encoders respectively.
We bring in a disagreement loss to minimize the difference between the two predictions, since the
graph embeddings from two encoders can be viewed as the different aspects for one single target
(the molecule)[28]. Therefore, no matter how the graph embedding is generated, the predictions of
this single target ought to be the same. Formally, given the molecular graph set G = {G;}X | and
corresponding labels V = {y; } X ,, we formulate this molecular property prediction loss as follows:

LmvenN = Lpred + ALldis,  Lais = Z |Yn,i — %,i|2 ) (6)
G, €6

where L is the supervised loss which can be formulated as ZGieg(‘CNOde-GNN(yiv’YH,i) +
Ledge-GNN(YisYe,i))s Y, 18 the output prediction produced by a fully connected neural network
given graph embedding &, ;, i.e., v« ; = ffn(£s i), * = n,e. Lgis is the disagreement loss for the two
predictions. A is a hyper-parameter indicating the coefficient of the disagreement loss.

4 Experiments & Results

We compare proposed model with 7 baselines over 11 benchmark datsets. 6/11 are classification
tasks, and the results are shown in Table 1. The rest are regression tasks, which are shown in Table 5
of Appendix B.3. All classification tasks are evaluated by AUC-ROC. For the regression task, we
apply MAE and RMSE according to different datasets. Noted that we apply the scaffold splitting
for all tasks on all datasets. Scaffold splitting splits the molecules with distinct two-dimensional
structural frameworks into different subsets[1], which is more meaningful and consequential for
molecular property prediction. To alleviate the effects of randomness and over-fitting, as well as to
boost the robustness of the experiments, we apply cross-validation on all the experiments. All of
our experiments run 10 randomly-seeded 8:1:1 data splits, which follows the same protocols in [31].
Details of the datasets, baseline models, and evaluation metric are shown in Appendix B.

Table 1: The performance comparison of classification tasks on AUC-ROC (higher is better).

Method BACE BBBP Tox21 ToxCast SIDER ClinTox
TF_Robust [23]  0.82419.022 0.86010.087 0.69810.012 0.58510.031 0.60710.033 0.765+0.085
GraphConv [4]  0.85410.011 0.877+0.036 0.772+0.041 0.650+0.025 0.593+0.035 0.845+0.051
Weave [12] 0.79110.008 0.837+0.065 0.74110.044 0.67810024 0.54310.034 0.82310.023
SchNet [26] 0.75010.033 0.84710.024 0.76710.025 0.67910.021 0.54510.038 0.71710.042
MGCN [16] 0.73410.030 0.850+0.064 0.70710.016 0.66310.009 0.55210.018 0.63440.042
Node-MPN [7]  0.815+0.044 0.91310.041 0.808+0.024 0.69110.013 0.5951+0.030 0.879+0.054
Edge-MPN [31] 0.85210.053 0.91940.030 0.82610.023 0.718+0.011 0.63210.023 0.897+¢.040
MVGNN 0.863 0002 0.938.:0003 0.83310001 0.729.10006 0.644. 0003 0.930( 003

Performance Evaluation As shown in Table 1, we have these findings: (1) Clearly, our MVGNN
gains significant enhancement against SOTAs on all datasets consistently with a 1.85% average im-
provement, which is regarded as a remarkable boost considering the challenges on these benchmarks.
(2) Compared with Node-MPN and Edge-MPN, MVGNN has obtained better prediction performance
as well as equipped with much smaller standard deviation. It indicates that MVGNN is not only able
to generate more informative and meaningful molecular representation by considering nodes and
edges simultaneously, but also more robust than both Node-MPN and Edge-MPN.

Visualization of the Interpretability Results To illustrate the interpretability of MVGNN, we visu-
alize certain molecules with the learned attentions associated with each atom within one molecule
from C1inTox dataset with toxicity as the label. As shown in Figure 2, we observe that different
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Figure 2: Visualization of attention values on selected molecules Figure 3: The St?ﬁStiCS of attentionh in
with trifluoromethyl in C1inTox dataset. Attention value smaller ~ClinTox. Left axis: the average attention
than 0.01 is omitted. Different color indicates different elements; vValue of the element. Right axis: the count
black: C, blue: N, red: O, green: CI, , sky-blue: F. of the element.

atoms indeed react distinctively: 1). Most atom carbon (C) that are responsible for constructing
the molecular topology have got zero attention value. 2). Beyond that, MVGNN promotes the
learning of functional group with impression on molecular toxicity, e,g,. toxic functional group
trifluoromethyl is known for the toxicity [25], which reveals extremely high attention value in
Figure 2. Furthermore, we provide a comprehensive statistics of the attention values over the entire
ClinTox dataset. Figure 3 demonstrates the average attention values for each single element, as
well as its total occurrences. It is notable that, 1). atoms with high frequency do not receive high
attention, such as topological element C. 2). atoms with low frequency but high attention values are
generally heavy elements. For example, Hg (Mercury) is widely known by its toxicity. Both above
observations yield our assumption that regarding atoms should be considered with different weights.

Overall, compared with the previous models, MVGNN is able to achieve more accurate prediction
performance, as well as provide strong interpretability for the prediction results, which are crucial for
the real drug discovery applications.
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A The Node/Edge Feature Extraction of the Molecules

The node/edge feature extraction contains two parts: 1) node/edge messages, which are constructed
by aggregating neighboring nodes/edges features iteratively; 2) molecule-level features, which are
the additional molecule-level features generated by RDKit to capture the global molecular information.
It consists of 200 features for each molecule [14]. Since we focus on the model architecture part, we
follow the exact same protocol of [31] for the initial node (atom) and edge (bond) features selection,
as well as the 200 RDKit features generation procedure. The atom features description and size
are listed in Table 2, and the bond features are documented in Table 3. The RDKit features are
concatenated with the node/edge embedding, to go through the final FCs to make the predictions.

Table 2: Atom features [31].

features size description
atom type 100  type of atom (e.g., C, N, O), by atomic number
formal charge 5 integer electronic charge assigned to atom

number of bonds 6 number of bonds the atom is involved in
chirality 4 Unspecified, tetrahedral CW/CCW, or other.
number of H 5 number of bonded hydrogen atoms
1
1
5

atomic mass mass of the atom, divided by 100

aromaticity whether this atom is part of an aromatic system
hybridization sp, sp2, sp3, sp3d, or sp3d2
Table 3: Bond features [31].
features size description

bond type 4 single, double, triple, or aromatic
6 none, any, E/Z or cis/trans

in ring 1 whether the bond is part of a ring
conjugated 1 whether the bond is conjugated

stereo

B Experimental Setup and Additional Results

B.1 Description of Dataset

Table 4 summaries the dataset statistics [30], including the property category, number of tasks and
evaluation metrics of all datasets. Six datasets are used for classification, and five datasets for
regression.

Molecular Classification Datasets. BACE dataset is collected for recording compounds which
could act as the inhibitors of human S-secretase 1 (BACE-1) in the past few years [27]. The Blood-
brain barrier penetration (BBBP) dataset contains the records of whether a compound carries the
permeability property of penetrating the blood-brain barrier [18]. Tox21 and ToxCast [24] datasets
include multiple toxicity labels over thousands of compounds by running high-throughput screening
test on thousands of chemicals . SIDER documents marketed drug along with its adverse drug
reactions, also known as the Side Effect Resource [13]. C1inTox dataset compares drugs approved
through FDA and drugs eliminated due to the toxicity during clinical trials [6].

Molecular Regression Datasets. QM7 dataset is a subset of GDB-13, which records the computed
atomization energies of stable and synthetically accessible organic molecules, such as HOMO/LUMO,
atomization energy, etc. It contains various molecular structures such as triple bonds, cycles, amide,
epoxy, etc [2]. QM8 dataset contains computer-generated quantum mechanical properties, e.g.,
electronic spectra and excited state energy of small molecules [22]. ESOL documents the solubility
of compounds [3]. Lipophilicity dataset is selected from ChEMBL database, which is an
important property that affects the molecular membrane permeability and solubility. The data is



Table 4: Datasets statstics.

Category Dataset Task # Tasks  # Graphs/Molecules Metric
Biophysics BACE Classification 1 1513 AUC-ROC
BBBP Classification 1 2039 AUC-ROC
Tox21 Classification 12 7831 AUC-ROC
Physiology ToxCast Classification 617 8576 AUC-ROC
SIDER Classification 27 1427 AUC-ROC
ClinTox Classification 2 1478 AUC-ROC
Quantum oM7 Regression 1 6830 MAE
Mechanics QM8 Regression 12 21786 MAE
. ESOL Regression 1 1128 RMSE
Physical , S :
Chemistry Lipophilicity RegressTon 1 4200 RMSE
FreeSolv Regression 1 642 RMSE

obtained via octanol/water distribution coefficient experiments [5]. FreeSolv dataset is selected
from the Free Solvation Database, which contains the hydration free energy of small molecules in
water from both experiments and alchemical free energy calculations [19].

B.2 Baselines

We thoroughly evaluate the performance of our methods with several popular baselines from both
machine learning and chemistry communities. TF_Roubust [23] is a multitask model based on
Deep Neural Network. GraphConv [4] is the vanilla graph convolutional model implementation by
updating the atom features with its neighbor atoms features. Compared with GraphConv, Weave
[12] model updates the atom features by constructing atom-pair with all other atoms, then combining
the atom-pair features. SchNet [26] and MGCN [16] explore the molecular structure by utilizing the
physical information, the 3D coordinates of each atom. Node-MPN [7] and Edge-MPN [31] perform
the message passing scheme on atoms and bonds, respectively.

B.3 Results of Regression Tasks

As shown in Table 5, MVGNN achieves the best performance on all the regression benchmark datasets
with a 11.3% average improvement. Specifically, our method relatively improves 17.9% over other
models on ESOL dataset, yet again, reveals the superiority and robustness of MVGNN.

Table 5: Performance comparison on regression tasks based on scaffold split (smaller is better). Best score is
marked as bold. Green cells indicate the results of proposed model.

Method QM7 QM8 ESOL Lipo FreeSolv

TF_RObUSt [23] 120~600i9.600 O~024i0,001 1~722i0,038 0~909i0.060 4~122i0.085
GraphConv [4]  118.875 120219  0.021 10001 1.068 10.050 0.712 10.049 2900 10.135
Weave [12] 94.688 +2.705 0.022 +0.001 1.158 +0.055 0.813 +0.042 2.398 +0.250
SchNet [26] 74204i4983 0.0zoio'oog 1~O45i0,064 0~909i0.098 3~215i0.755
MGCN [16] 77.623 14,734 0.02219.002 1.26640.147 1.11340.041  3.34940.007
Node-MPN [7]  112.960 117211 0.015 +o.002 1.167 +o430 0.672 10.051  2.185 1o.952
Edge-MPN [31]  105.775 113202 0.0143 190023 0.980 19258 0.653 10046 2.177 10.914
MVGNN 71325 10513 0.0127 100005 0.8049 10036 0.599 10016 1.840 10 104
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