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Abstract

Mass Spectrum (MS) is widely used to assign chemical identities to small molecules1

in many biological and biomedical applications. In this work, we explore using2

graph neural networks (GNNs) for MS prediction. The input to our model is3

a molecular graph. The model is trained and tested on the NIST 17 LC-MS4

dataset. We compare our results to NEIMS, a neural network model that utilizes5

molecular fingerprints as inputs. Our results show that GNN-based models offer6

higher performance than NEIMS. Importantly, we show that ranking results heavily7

depend on the candidate set size and on the similarity of the candidates to the target8

molecule, thus highlighting the need for consistent, well-characterized evaluation9

protocols for this domain.10

1 Introduction11

Mass Spectrum (MS) techniques coupled with liquid or gas chromatography separation techniques,12

LC-MS or GC-MS, have become a standard analytical platform for small molecules produced in13

biological systems [1, 2]. The LC or GC step aims to separate compounds within the sample, while the14

MS step aims to ionize, fragment and detect a fragmentation pattern. For each particular compound15

and its fragments, this pattern forms a spectral signature, comprising a chromatographic retention16

time (RT) paired with mass-to-charge ratio (m/z) and their respective relative intensities.17

Interpreting MS measures requires annotation, the process of assigning putative chemical identities18

to each spectral signature. From a computational perspective, mapping molecules to their respective19

spectral signatures represents a “forward problem”. Mapping spectral signatures back to their respec-20

tive molecular identity is an “inverse problem”. The inverse problem is exceptionally challenging21

as not all fragments are measured and many isomers (same molecular formula but different atom22

configurations) have almost indistinguishable spectra.23

Current annotation techniques attempt to solve the forward problem, and can be broadly classified24

into two categories. Database lookup relies on comparing measured spectra against experimentally25

generated spectra cataloged in spectral databases [3, 4, 5, 6]. Coverage of such libraries however is26

limited, as experiments are required to generate signatures from known, trusted chemical standards.27

Based on a predetermined set of candidate molecules, in-silico annotation tools recommend a28

candidate molecule that best explains the measured spectra. The candidate set is typically culled29

from large molecular databases, such as PubChem, based on molecular mass or formula, if possible.30

Earlier works generated fragmentation patterns of candidate metabolites using rule-based approaches31

[7, 8, 9] followed by combinatorial enumeration methods [10, 11, 12, 13]. More recently, machine-32

learning algorithms have been investigated. CFM-ID trains a probabilistic generative model of the33

fragmentation process to predict patterns of fragmentation [14, 15]. CSI:FingerID [16] first predicts34

a fragmentation tree based on a spectral signature and then uses multiple-kernel learning [17] and35

support vector machines (SVMs) to predict molecular properties that are then searched against36
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properties of candidate molecules. All of these techniques explicitly model compound fragmentation.37

A recent study proposed a model, NEIMS (Neural Electron-Ionization Mass Spectrometry), to38

augment existing NIST 17 GC-MS libraries with with synthetic spectra predicted from candidate39

molecules [18]. The molecules are first mapped to their ECFP (Extended-Connectivity Fingerprints)40

fingerprint that record the count of molecular subgraphs within a specified radius centered on each41

atom in the molecule. Using a radius of 2, the fingerprint consisted of 4096 entries. The fingerprint is42

input to a fully connected feed forward neural network (FFNN) with a gated bidirectional design to43

improve the prediction accuracy. However, fingerprints, while common and useful, are not tailored44

to the prediction task. Moreover, NEIMS was only evaluated on the NIST data generated via the45

GC-MS technique. GC-MS fragmentation patterns are simpler than those obtained using LC-MS.46

Further GC-MS is typically used to measure volatile compounds (or compounds that can be extracted47

into an organic solvent and vaporized using GC), which typically have masses less than 500 Daltons.48

Here, we evaluate the feasibility of using Graph Neural Networks (GNNs) on the MS prediction49

task. GNNs have been shown powerful in terms of learning representations from structured data50

[19, 20, 21, 22], such as social networks, knowledge graphs and molecules. Here, we represent each51

molecule as a graph, where atoms are represented as nodes, and bonds are represented as edges. We52

explore the use of both Graph Convolutional Networks (GCN) [20] and Graph Attention Networks53

(GAT) [21]. We train and evaluate our technique on the NIST 17 LC-MS dataset.54

2 Methods55

2.1 Datasets56

For training and evaluation, we focused our efforts on the tandem MS/MS data in the NIST 17 dataset,57

and selected spectra obtained using HCD (higher energy collisional dissociation), which provides a58

richer and more varied spectra than CID (collision induced dissociation). The HCD option was used59

to measure 69.6% of the MS/MS data. We also restricted the precursor types to only include ones that60

are common in the dataset (e.g., [M+H]+, [M-H]-, [M+H-H2O]+, [M-H-H2O], etc.). We selected61

one spectrum with the largest collision energy under 40eV for each training and test molecule.62

From the reduced dataset, we randomly select 1000 molecules as a test set. We then split the remaining63

dataset into training and validation (4:1 ratio), yielding 6,188 training and 1,539 test molecules. The64

validation set is used for model selection while the test set is used to report performance. The relevant65

candidate sets for the test molecules were queried from PubChem using the exact molecular formula66

of each test molecule. The average number of candidates per test molecule is 1,530.67

2.2 Data Preprocessing68

A molecule is represented as a graph G = (V,E), where atoms correspond to the node set V and69

bonds correspond to the edge set E. Let X = {x1, x2, ..., xN}, xi ∈ RF denote a set of node70

features, where N is the number of nodes and F is the number of node features. The connectivity71

among nodes is described by an adjacency matrix A ∈ {0, 1}N×N . Node features include standard72

atom-level features, such as atomic weight, atom type, number of bonds, etc..73

The spectra data is a list of paired mass-to-charge ratio (m/z) and their relative intensities. Each m/z74

value was rounded down to the nearest integer m/z bin. If more than one m/z values are rounded to75

the same bin, we record the highest intensity. The range of intensity values has a long tail of large76

values, so we take either the logarithm or the square-root of these values and denote the vector as y.77

2.3 Neural Network78

An overview of our neural network (NN) architecture is illustrated in Figure 1. The model comprises79

multiple GNN layers, a pooling layer and a fully-connected feed forward regression model. In80

each GNN layer, node information is propagated along graph edges. More specifically, let h =81

{h1, h2, ...hN}, hi ∈ RH denote the input of a GNN layer, where H is the dimension of input node82

embedding vector. Let h′ denote the output with H ′ as the dimension of the new node embedding.83

The weight matrix of such a layer is W ∈ RH′×H and the bias term is b. In the first GNN layer, h is84

set to the original node features, X. By stacking several layers of GNN layers, information on each85

node propagates along edges to a broader neighborhood within the graph.86
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Figure 1: Illustration of the network architecture used in this study

We explore using two GNN implementations: GCN [20] and GAT [21]. The propagation rule of a87

single GCN layer is given as:88

h′i = σ(
∑

j∈N (i)

1

cij
Whj + b)

where N (i) is the set of neighbors of node i and σ is an activation function. cij is a normalization89

term and it is set equal to
√
|N (i)||N (j)|. The normalization penalizes nodes with too many90

connections to avoid extreme values. In contrast to GCN, GAT utilizes attention mechanism to91

propagate information as follows:92

h′i =
∑

j∈N (i)

αijWhj

where αij is the attention term and equals to softmaxi(σ(~a
T [Whi||Whj ])). In essence, GAT93

introduces additional trainable attention weights, ~aT , on the concatenated Whi and Whj vectors,94

to model a weighting term that controls how the message Whj from each neighbor j should be95

propagated to node i. The softmax activation ensures that the sum of these weighting terms equals to96

1 for each node. By design, GAT does not have a bias term.97

After the learned node representation h is obtained, node information is “pooled” into a graph98

embedding vector v ∈ RH , with information about the entire graph. We compared several different99

pooling methods including Global Maximum, Global Average and Global Attention [23].100

After the pooling layer, the graph embedding vector v is fed into a FFNN that predicts ŷ ∈ R1000.101

We also evaluated a gated linear unit (GLU) [24] instead of a dense layer for the outcome prediction.102

A GLU predicts two outputs simultaneously while one of the two outputs is activated by sigmoid and103

acts as a gate for the other output. The final output is activated by a ReLU function [25].104

2.4 Training105

The model was trained by minimizing the mean square error (MSE) between ŷ and y after normal-106

ization. To reduce overfitting, we used L2 regularization with lambda set to 1.0 and a dropout rate at107

0.5. All models were trained on a Nvidia P100 for a maximum of 1,000 epochs using Adam [26]108

with early stopping on validation loss with a window size of 15.109

2.5 Evaluation110

We evaluated our models using two metrics. First, the cosine similarity between the predicted and111

target spectra is used to assess the quality of the predicted spectra. Second, recall@k, a common112

metric for evaluating annotation tools, measures the the portion of correctly identified molecular113

identities in the test dataset when considering the top k ranked candidate molecules for each test114

spectra. We used the NEIMS model [18] as a baseline.115
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3 Results116

Table 1: Summary of sesults in cosine similarity and recall@k
Experiment Similarity Avg Rank Recall@1 Recall@5 Recall@10

NIST 17 + Candidates from PubChem (Sampled with Average Size = 50)
NEIMS 0.157 16.7 30.2 52.5 65.1
GCN (3 layers) 0.426 10.8 33.9 62.3 75.9
GAT (3 layers) 0.468 9.2 36.0 65.2 76.6
GAT (10 layers) 0.512 7.1 41.2 70.7 81.4
GAT + GLU 0.517 6.8 45.1 70.8 83.3

Compared with the NEIMS117

model (Table 1), GNN-based118

NN models generate signif-119

icantly more accurate spec-120

tra and exhibit higher re-121

call@k. In our hyper-122

parameter search, we found123

that including adjacent bond124

information was beneficial.125

Log transformation on spec-126

tral intensity consistently127

provides better performance128

than square-root transformation. GAT performs better than GCN, suggesting that the attention129

mechanism is effective for this task. We also observed the reported effect that the performance of130

GCN quickly dropped as the number of GCN layers increase [22]. However, by using GAT, it was131

possible to build deeper GNN models. The best performance happens when there are 10 layers of132

stacked GATs with 64 hidden units, with the output predicted by GLU. Among the three pooling133

methods, Global Max provided better performance than the other two. After the model was trained, it134

achieved ~11,000 predictions per second on an Nvidia V100 GPU card.135

# of Candidates:  50 # of Candidates:  250 # of Candidates:  1000

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
0.0

0.5

1.0

Top k

R
ec

al
l

Random FFNN GNN
A)

Least Similar
Most Similar

Least Similar

Most Similar

Least Similar

Most Similar

Least Similar

Most Similar

Least Similar

Most Similar

Least Similar

Most Similar

# of Candidates: 50 # of Candidates: 250 # of Candidates: 1000

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.5

1.0

0.0

0.5

1.0

Top k

R
ec

al
l

B)

Figure 2: Impact of: (A) candidate size and (B) candidate similar-
ity on ranking results

To evaluate how the candidate136

set size impacts ranking perfor-137

mance, we calculate the ratio be-138

tween the average number of can-139

didates (1,530) and 50/250/1000140

and used these ratios to sample a141

proportion of candidates for each142

test molecule appropriately. As143

shown in Figure 3A, the recall@k144

performances for both models de-145

crease as the average number of146

candidates increases. With more147

candidates to choose from, cor-148

rect identification becomes more149

challenging. In Figure 3B, where150

MACCS Fingerprints were used151

to identify the most similar and152

least similar compounds in the153

candidate set, recall@k perfor-154

mances are low when candidate155

molecules are similar with their156

target molecule.157

Ranking on a candidate set using158

recall@k is widely used for annotation evaluation. Current evaluation datasets (in terms of test159

molecules and their candidate sets), however, vary tremendously. Our results show that ranking160

results for both models heavily depend on the candidate set size and the similarity of the candidates161

to the target molecule, thus highlighting the need for better and consistent evaluation protocols for162

annotation tools.163

4 Conclusion164

We investigated several GNN-based models to predict the mass spectra for query molecular structure.165

Our model outperforms previously reported NN models. Importantly, we found that ranking results166

are heavily dependent on the candidate set size as well as the similarity of candidate molecules167

with target molecule. We encourage researchers to standardize performance evaluation for the MS168

prediction task, and to consider GNN-based methods for annotation.169
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