
Conditional generation of molecules from
disentangled representations

Amina Mollaysa
University of Geneva

University of Applied Sciences Western Switzerland
maolaaisha.aminanmu@etu.unige.ch

Brooks Paige
University College London

Alan Turing Institute
b.paige@ucl.ac.uk

Alexandros Kalousis
University of Geneva

University of Applied Sciences Western Switzerland
alexandros.kalousis@unige.ch

Abstract

Though machine learning approaches have shown great success in estimating
properties of small molecules, the inverse problem of generating molecules with
desired properties remains challenging. This difficulty is in part because the set of
molecules which have a given property is structurally very diverse. Treating this
inverse problem as a generative modeling task, we draw upon work in disentangled
representations to learn a variational autoencoder (VAE) which includes latent
variables representing both property information and molecular structure. By
explicitly setting the property to a desired value at generation time, can perform
conditional molecule generation via a “style transfer” process. We improve the
disentangling behaviour relative to baseline VAE models by introducing a novel
regularization term which constrains the generated molecules to have the property
provided to the generation network, no matter how the latent factor changes.

1 Introduction

Conditional molecule generation is far from being solved. The main challenge is the enormous and
discrete nature of the molecules space, and the fact that molecule properties are highly sensitive to
molecular structure [11]. Many existing approaches to conditional generation are two-step, either
using a model or genetic algorithm to generate candidates [17] which are later filtered, or learning a
continuous embedding of the discrete molecules and optimizing in a real-valued representation space
[12, 8, 4, 14?]. The former is computationally expensive, the latter performs conditional generation
only obliquely. Alternatively, reinforcement learning approaches [6, 21, 5] and graph-to-graph
translation [9] yield generators that are tuned to maximize certain metrics. This improves upon basic
virtual screening methods by providing more targeted generation; however, these models must be
retrained for any new reward functions.

We propose a conditional generative model that produces candidate molecules targeting a desired
property in a single step. This approach builds on work in structured deep generative models [10, 18],
which aim to learn a disentangled representation that factors into distinct latent variables: one, the
observed properties we want to control for; and two, latent factors that account for the remaining
features which are either hard to annotate or irrelevant to the properties we wish to optimize. We
derive a regularizer for supervised variational autoencoders which exploits property information that
we provide as supervision, ensuring that produced molecules adhere to target properties they are
conditioned on. We demonstrate the ability of our model to perform accurate conditional generation

Machine Learning for Molecules Workshop at NeurIPS 2020. https://ml4molecules.github.io

https://ml4molecules.github.io

decoder network

latent space

target propertyencoder network

discrete  
sampling
procedure

h
: generated

molecule

f(x̂)

f!(h) ⇡ E[f(x̂)] ⇡ y?

g✓(z,y
?)

y? f!(h)

p✓(x|z,y?)

Approximate target property:

Non-differentiable  
property estimation

Figure 1: Setting and modeling pipeline for conditional generation of molecules, with supervision
provided via an external property prediction oracle. Red lines correspond to non-differentiable
components, the blue dashed line corresponds to the approximate property predictor.

as well as “style transfer” on molecules, where a latent representation for a single molecule can have
its target properties perturbed relatively independently of its learnt structural characteristics, allowing
direct and efficient generation of candidates for local optimization of molecules.

2 Background

Condtional generation and style transfer with supervised VAEs Suppose we are given a training
set of pairs D = {(xi,yi)}, i = 1, . . . , N , where we refer x to molecules and y to some properties.
To account for the diversity of molecules with a particular property, we model the conditional
distribution with a latent variable z, such that pθ(x|y) =

∫
pθ(x|z,y)p(z)dz. To do so we fit

a joint generative model of the form pθ(x,y, z) = pθ(x|y, z)p(y)p(z), in which y and z are
independent under the prior, To infer the latent variable z we introduce a multivariate normal posterior
approximation, or encoding distribution, qφ(z|x) and optimize

LELBO(θ, φ) =
N∑
i=1

{
Eqφ(zi|xi)[log pθ(xi|yi, zi)]−DKL(qφ(zi|xi)||p(zi))

}
. (1)

This objective corresponds to learning a supervised VAE [10]. Once we learn the generative model
pθ(x|y, z), we can perform both conditional generation and style transfer by setting y to target value
and sampling z either from the prior or from a specific molecule’s encoding distribution.

Maximizing this conditional ELBO in Eq (1) will likely yield good reconstructions, but for properties
which only weakly inform the generative model there is nothing to enforce that the variable y actually
take part in the generative process. Since the value y is something we know is a derived property
of the molecule x, it is completely possible for all information about y to also be encoded in the
representation z, in which case there is no guarantee that the learnt likelihood pθ(x|y, z) actually
takes into account the value of y. Furthermore, for style transfer to be possible z must be disentangled
from y, as we need z to be relatively stable when we modify the y.

3 Conditional generation by disentangling

Constrained ELBO Assume we have access to some oracle function f (possibly non-
differentiable) which for any given x outputs a property estimate y, e.g., RDKit [13]. Since for
conditional generation our ultimate goal is to generate a molecule x for any given target property y0,
which then actually has f(x) = y0, we can reframe the problem by introducing hard constraints on
the generated values, i.e. if restricting to values of y in the training set,

max
θ,φ
LELBO(θ, φ) subject to Ex∼p(x|yi)[I[f(x) = yi]] = 1, ∀i = 1, . . . , N

This is an unreasonably hard constraint, unlikely to be satisfied by any distribution other than one
which simply places a point mass on the single xi associated with yi. We can relax it by considering
that the property space y is typically smooth, and reframe it as a soft penalty on the ELBO [15, 7]:

L(θ, φ) = LELBO(θ, φ)−
λ1
2

N∑
i=1

Ex̂∼pθ(x|yi)‖f(x̂)− yi‖2 (2)

2

This constraint is expected to hold for any pair (x,y) , not just those in the training data. We also
show optimizing the relaxed constraint is equivalent to maximizing mutual information with the
target yi and generated molecule x̂ (appendix Section A.3).

Approximating the property predictor As it is shown in figure 1, f is often non-differentiable
or CPU-bound, and x̂ are discrete samples from a categorical distribution. To enable gradient-based
training on GPUs and avoid discrete sampling, we propose bypassing the discrete sampling step and
learning a function fω that can map from a learned representation of the molecules gθ(z,y), which is
the last hidden layer of the decoder network, directly to molecule property [7]. Ideally, fω would
estimate the property distribution obtained by marginalizing out the discrete sampling step:

fω(h ≡ gθ(z,y0)) ≈ Epθ(x|z,y0)[f(x)], (3)

where y0 refers to an arbitrary input target property. With the approximation in Eq. (3), which can be
used as a drop-in replacement for the non-differentiable penalty term in Eq. (2), we have

Epθ(x̂|yi)‖f(x̂)− yi‖2 = Ep(z)
[
Epθ(x̂|yi,z)‖f(x̂)− yi‖2

]
≈ Ep(z)‖fω(gθ(z,yi))− yi‖2,

This encourages all the molecules that are generated from property yi to have property close to yi,
no matter how we vary z. Therefore we refer it as disentangling regularizer:

Ldisent(θ, ω) =
λ1
2

N∑
i=1

Ep(z)‖fω(gθ(z,yi))− yi‖2 (4)

yielding a candidate objective function

L(θ, φ) ≈ LELBO(θ, φ)− Ldisent(θ, ω) (5)

Learning the property estimator jointly with generative model While one could imagine at-
tempting to learn fω jointly with φ, θ by direct optimization of Eq. (5), in practice this is very unstable,
as values of gθ(z,yi) early in training may correspond to very poor generated molecules x̂i which
may not have properties at all similar to yi. This can be sidestepped by training the property estimator
jointly as part of an extended generative model on [x,y]. From Eq. 3, we note that the property
estimator fω parameterizes a probability distribution pω(f(x)|z,y0), where x ∼ pθ(x|z,y0). With
a Gaussian distribution over the error, we can consider

pω(f(x)|z,y0) = N (f(x)|fω(gθ(z,y0)), λ
−1
2 I) (6)

for small, fixed λ2. Therefore, we propose defining a new ELBO based on a joint autoencoder for
{f(xi),yi)}, with a joint likelihood p{θ,ω}(xi, f(xi)|zi,yi) = pω(f(xi)|zi,yi)pθ(xi|zi,yi). This
yields a joint ELBO for the training set of

LELBO(ω, θ, φ) =
N∑
i=1

Eqφ(z|xi)
[
log

pω(f(xi)|z,yi)pθ(xi|z,yi)p(z)
qφ(z|xi)

]

= LELBO(θ, φ)−
λ2
2

N∑
i=1

Eqφ(z|xi)‖fω(gθ(z,yi))− yi‖22. (7)

where we also see that LELBO(ω, θ, φ) ≤ LELBO(θ, φ), allowing us to define an objective

L̂(ω, θ, φ) = LELBO(ω, θ, φ)− Ldisent(θ, ω), (8)

which is a lower bound on Eq. (5). Notice the two terms we have added to the original ELBO are
quite similar, differing only in choice of distribution: for learning fω, we wish to use values of z
simulated form the approximate posterior qφ(z|x), whereas for enforcing a constraint across all
possible generations we simulate z from the prior p(z). However, during training, we instead sample
from the marginal posterior over z by mirroring the style transfer process: for a target yi, we sample
z from an encoding of an actual data point xj where i 6= j. See detail in appendix A.5.

3

QM9 ZINC
Model Reconstruction % Valid% Unique % Novel % Reconstruction % Valid% Unique % Novel %

CVAE [4] 3.61 10.3 - 90.0 44.6 0.70 - 100
GVAE [12] 96.00 60.20 - 80.90 53.70 7.20 - 100
SD-VAE [3] 97.84 98.40 99.28 91.97 76.20 43.50 - -

Sup-VAE-1-GRU 97.53 93.66 91.30 92.05 74.12 32.84 94.61 100
CGD-VAE-1-GRU 99.27 95.61 93.65 87.87 88.64 29.00 99.24 100
Sup-VAE-3-GRU 97.81 97.90 95.09 89.47 82.40 36.16 86.26 100
CGD-VAE-3-GRU 99.31 97,80 98.77 96.21 81.80 37.78 98.75 100

Table 1: Reconstruction performance and generation quality (Valid, Unique, Novel).

Model z ∼ q̂σ(z) z ∼ q(z|x)

QM9

Sup-VAE-1-GRU 0.5420 0.2526
CGD-VAE-1-GRU 0.7185 0.5005
Sup-VAE-3-GRU 0.6958 0.4204
CGD-VAE-3-GRU 0.7414 0.4715

ZINC

Sup-VAE-1-GRU 0.2301 0.0481
CGD-VAE-1-GRU 0.3877 0.0880
Sup-VAE-3-GRU 0.3514 0.1808
CGD-VAE-3-GRU 0.3966 0.1559

Table 2: Correlation between the
desired input property and the ob-
tained property .

Table 3: Conditional generation given the desired logP=-
0.5759, row molecules have a logP within a 15% range of
the desired one.

4 Experiments

We experiment with the QM9 [16] and ZINC 250k [19] datasets. Our goal here is two-fold: we would
like to understand (1) whether a supervised variational autoencoder is capable of learning suitable
conditional distributions over molecules, and (2) to what extent this task is assisted by the additional
regularization term corresponding to the soft constraint.

Experimental setting is kept the same as [3] with the only difference that our decoder takes as input
the concatenation of y, z. We used logP [20] as the property to condition on. We give the details
of the architecture in the appendix section A.4. We evaluate the reconstruction accuracy and the
quality of the molecules generated by our method, which we denote by CGD-VAE (conditional
generation with disentangling) and compare against CVAE [4], GVAE [12], and SD-VAE [3]. We
explore its conditional generation performance in two settings: controlling only the property value and
controlling both the property value and the molecule structure to what can be seen as style transfer. We
also implemented supervised VAE versions of SD-VAE(Sup-VAE-X-GRU, X ∈ {1, 3}, denotes GRU
layers) which can do conditional generation. For conditional generation, instead of marginalizing
over the prior p(z), we use q̂σ(z) which is an approximation of the aggregated posterior.

In table 1, we report reconstruction performance and generation performance in terms of the per-
centage of valid, unique and novel molecules. We can see that our model has a better reconstruction
performance compared to the baselines while in some cases generating slightly less valid molecules.
To quantify the quality of the conditional generation and style transfer, we measure the correlation
between the property value we obtain by the conditional generation and the property value on which
we conditioned the generation. In Table 2, the two columns correspond to conditional generation and
style transfer performance respectively. We randomly sample 1000 y values from the test set and
1000 z values from the approximate learned prior q̂σ(z) or from learned posterior q(z|x). We decode
each pair, obtain x̂ ∼ pθ(x|y, z), and then measure the correlation of the original y with the ŷ of
generated x̂. As we can see our method has a considerably higher correlation score than Sup-VAE.
Conditional generation seems considerably harder for the ZINC dataset for all methods.

In Figure 3, we visualize the conditional generation results where we randomly sample from the
test set some molecule and obtain its property value y0. We then draw 50 random samples zi from
q̂σ(z) and decode the [zi,y0] vectors. Among the generated 46 valid molecules, we display those
that have a property value yi within a 15% range from the y0 property value. As we can see we get
molecules that are structurally very different from the original one yet they have similar logP value.
Visualization of style transfer and molecule property optimization are in Appendix figs. 2 through 5.

4

5 Conclusion

We presented a single-step approach for the conditional generation of molecules with desired proper-
ties. Our model allows also to condition generation on a prototype molecule with a desired high-level
structure. We found that training the deep generative models conditional on target properties, follow-
ing a supervised VAE approach, does not appreciably harm the quality of the unconditional generative
model as measured by validity, novelty, and uniqueness of samples. Furthermore, we see that the
additional act of regularizing the output using an approximate property predictor helps improve
both reconstruction accuracy and property correlations in most combinations of tasks and datasets,
particularly for the smaller QM9 dataset and for smaller models with fewer RNN layers.

5

References
[1] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable

representation learning by information maximizing generative adversarial nets. In Advances in
neural information processing systems, pages 2172–2180, 2016.

[2] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[3] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song. Syntax-directed variational autoencoder for
structured data. arXiv preprint arXiv:1802.08786, 2018.

[4] R. Gómez-Bombarelli, D. K. Duvenaud, J. M. Hernández-Lobato, J. Aguilera-Iparraguirre, T. D.
Hirzel, R. P. Adams, and A. Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. CoRR, abs/1610.02415, 2016.

[5] S. K. Gottipati, B. Sattarov, S. Niu, Y. Pathak, H. Wei, S. Liu, K. M. Thomas, S. Blackburn,
C. W. Coley, J. Tang, et al. Learning to navigate the synthetically accessible chemical space
using reinforcement learning. arXiv preprint arXiv:2004.12485, 2020.

[6] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and A. Aspuru-Guzik.
Objective-Reinforced generative adversarial networks (ORGAN) for sequence generation mod-
els. May 2017.

[7] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Toward controlled generation of
text. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1587–1596. JMLR. org, 2017.

[8] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph
generation. arXiv preprint arXiv:1802.04364, 2018.

[9] W. Jin, K. Yang, R. Barzilay, and T. Jaakkola. Learning multimodal graph-to-graph translation
for molecular optimization. arXiv preprint arXiv:1812.01070, 2018.

[10] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep
generative models. In Advances in Neural Information Processing Systems, pages 3581–3589,
2014.

[11] P. Kirkpatrick and C. Ellis. Chemical space. Nature, 432(7019):823, 2004.

[12] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. arXiv
preprint arXiv:1703.01925, 2017.

[13] G. Landrum. Rdkit: Open-source cheminformatics.

[14] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt. Constrained graph variational autoen-
coders for molecule design. In Advances in Neural Information Processing Systems 31, pages
7806–7815. 2018.

[15] T. Ma, J. Chen, and C. Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. In Advances in Neural Information Processing Systems 31, pages
7113–7124. 2018.

[16] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld. Quantum chemistry structures
and properties of 134 kilo molecules. Scientific data, 1:140022, 2014.

[17] M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller. Generating focused molecule libraries for
drug discovery with recurrent neural networks. ACS central science, 4(1):120–131, 2017.

[18] N. Siddharth, B. Paige, J.-W. Van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, and
P. Torr. Learning disentangled representations with semi-supervised deep generative models. In
Advances in Neural Information Processing Systems, pages 5925–5935, 2017.

[19] T. Sterling and J. J. Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

6

[20] S. A. Wildman and G. M. Crippen. Prediction of physicochemical parameters by atomic
contributions. Journal of chemical information and computer sciences, 39(5):868–873, 1999.

[21] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec. Graph convolutional policy network for
goal-directed molecular graph generation. In Advances in Neural Information Processing
Systems 31, pages 6412–6422. 2018.

A Appendix

A.1 Style transfer demo

To visualise the style transfer behavior of our model we randomly sample two molecules xA,xB
from the test set. We then sample zA from the learned posterior qφ(z|xA). We subsequently decode
[zA,yB], yB is the property of xB , and get a new molecule x̂AB . Ideally, the obtained molecule
x̂AB should have a property value (logP) close to the target yB and be similar to xA. In Figure 4 we
give one such example. To put the results into context, in Figure 3 we give the results of a virtual
screening method, where we select from the full dataset five molecules which are structurally similar
to xA and have logP values close to yB . Our model generates novel molecules.

We further explore the style transfer and visualize how our model covers the combined space of
molecule structure and properties. We sample nine molecules from the QM9 test set, and get their z
encodings. For each such encoding we decode the vectors [z, y], y ∈ [−4.9, 4.9], with the y (logP)
interval sampled at 11 points. We give in Figure 2 the resulting valid molecules, each column
corresponding to one of the nine original molecules (surrounded by a dotted rectangle), and their
decodings with different logP values. For each original molecule we order the generated molecules
along the y axis according to the property that they actually exhibit. The x-axis is ordered based on
the original molecules’ logP values. As we can see not all (z, y) combinations produce a result. These
holes can be explained either by the physical infeasibility of the combination and/or a limitation of
the learned model.

Figure 2: Style transfer. The z of the nine real molecules placed in the x-axis is combined with 11 y
property values, sampled in [-4.9, 4.9], the resulting pair is decoded to a molecule.

7

Figure 4: Style transfer

Figure 5: Property optimization. Given a start
molecule (red), we combine its z with 1000 logP
values and decode (blue)

Figure 3: Molecules selected with virtual screening over the full dataset in a manner that they are
structurally similar to the A molecule of figure 4 while they have a logP value which is close to the
logP value of the B molecule also of figure 4

A.2 Molecule property optimization

We can use conditional generation to control in a fine manner the value of the desired property, to
what can be seen as direct property optimization. We visualize the level of control we have on an
experiment with a single molecule (with logP is -1.137), which we randomly sample from the test
set. We obtain its z encoding and perform generations with increased logP taking values in 1000
point grid in [−1.137, 4.9]. We then decode [z,yi] and compute the logP value of the generated
molecules. Among the 1000 generated molecules only 19 are unique. We get an increase of logP of a
very discrete nature, Figure 5. As already discussed not all combinations of structure and properties
are possible.

A.3 The regulariser and its relation to the mutual information maximization

The soft constraint in the loss 2, in fact, is equivalent to a simple maximizing mutual information
formulation between generated molecules x̂ and the target property y provided to the generator.
Assume the true conditional distribution is p̃(y|x):

I(y; x̂) = H(y)−H(y|x̂)
= H(y) + Ex̂∼pθ(x|y)Ey′∼p̃(y|x̂)[log p̃(y

′|x̂)] (9)

We do not know the true distribution p̃(y|x̂). However, RDKit provides a molecule property estimator
f which, if we assume a Gaussian distribution over error, gives us p(y|x̂) = N (y|f(x̂), λ−11 I). We
have:

I(y; x̂) = H(y) + Ex̂∼pθ(x|y)Ey′∼p̃(y|x̂)[log
p̃(y′|x̂)
p(y′|x̂)p(y

′|x̂)]

= H(y) + Ex̂∼pθ(x|y)[Dkl(p̃(y
′|x̂)||p(y′|x̂))

+ Ey′∼p̃(y|x̂) log p(y
′|x̂)]

≥ H(y) + Ex̂∼pθ(x|y)[Ey′∼p̃(y|x̂) log p(y
′|x̂)] (10)

By following the Lemma that is been proven in [1]:

Lemma A.1 For random variables X, Y and function f(x,y) under suitable regularity conditions:

Ex∼X,y∼Y|x[f(x,y)] = Ex∼X,y∼Y|x,x′∼X|y[f(x
′,y)] (11)

8

we have:

Ex̂∼pθ(x|y)[Ey′∼p̃(y|x̂) log p(y
′|x̂)]

= Ey∼p(y),x̂∼pθ(x|y)[log p(y|x̂)] (12)

This means, the mutual information is lower bounded by:

I(y; x̂) ≥H(y)− λ1
2

N∑
i=1

Ex̂∼pθ(x|yi)‖f(x̂)− yi‖2 (13)

H(y) is constant, therefore, minimizing our regularizer
∑N
i=1 Ex̂∼pθ(x|yi)‖f(x̂)−yi‖2 is equivalent

to maximizing I(y; x̂) under the assumption that p(y|x̂) is close to p̃(y|x̂), i.e., the RDKit oracle
provides a good estimation of the molecules’ true properties.

A.4 Architecture and Training procedure description

We represent molecules using the one-hot encoding of their SMILES production rules [12] and
add a semantic constraint [3] on the decoder network to avoid generating syntactically correct but
semantically invalid molecules. We use 80 production rules to describe molecules and set the
maximum SMILES sequence length to 100 for the QM9 dataset and 278 for the Zinc dataset. We
experiment with the logP property of the molecules [20]. We use the same encoder and decoder
network structure as [3] with the only difference that our decoder takes as input the concatenation of
y, z.

We evaluate the reconstruction accuracy and the quality of the molecules generated by our method,
which we denote by CGD-VAE (conditional generation with disentangling) and compare against
CVAE [4], GVAE [12], and SD-VAE [3]. We explore its conditional generation performance in two
settings: controlling only the property value and controlling both the property value and the molecule
structure to what can be seen as property transfer. We took the results of CVAE, GVAE from the
literature. For SD-VAE we used the authors code with the default values to generate results for QM9
since these were not available for QM9. We also implemented supervised VAE versions of SD-VAE
which we denote Sup-VAE-X-GRU (X ∈ {1, 3}, denotes GRU layers) and which can do conditional
generation.

We use the same encoder and decoder network structure as [3] with the only difference that our
decoder takes as input the concatenation of y, z. As GRU layers become computationally expensive
when the sequences length increase, we also examined the model using less layer GRU. To be
precise, the decoder in [3] takes the from of a dense hidden layer with ReLU activation followed
by three layers GRU [2]. We tried two different settings of decoder: in the first setting, we feed the
concatenation of y, z to dense layer then apply one layer GRU, in the second setting, to enhance
the effect of y in the decoder, we feed y not only to the dense layer but also to each layer of GRU.
Furthermore, we set the dimension of the latent representation to 56. For the oracle function estimator
fw, we use the same network architecture as the encoder (there is no parameter sharing) and we add
one more fully connected layer followed by a Tanh transformation.

To speed up convergence, we initialize the fw from a pre-training, where we train fw on the well-
trained (maximum 500 epochs with early stopping) supervised VAE’s decoder output to predict the
molecules property value. We also initialize the parameters of the encoder/decoder networks with the
partially trained supervised VAE model (after 40 epochs for QM9, 100 epochs for ZINC). We do not
update ω and φ, θ simultaneously, instead we do an alternate optimization. We update ω continuously
for five epochs while holding φ, θ and do the same for updating φ, θ. We set the hyper-parameter
value λ1 to 50 and λ2 to 1. The mini-batch size is set to 300 for QM9 and 100 for ZINC. We use
ADAM optimizer with learning rate 0.0001 and pytorch lr-scheduler on the validation loss. The
general training algorithm is described in below algorithm block1. In our experiment, to train fω,
we skipped the second term in step 7, which means we only train fω on the training data but not the
newly generated molecules obtained by permuting the property. The reason for this is that, during
the training, we found that it is easy for the model to learn to reconstruct but hard to conditionally
generate the molecules with given properties while we have no guidance of what the molecules
should look like. Further more, some combination of z and y are physically not feasible. In this case,
when the conditional generation is not good enough yet during the training, we end up fitting fω on
the miss represented molecules representations and it makes the optimization harder.

9

A.5 Gradient estimation

As the regularizer Ldisent(θ, ω) encourages disentangling by constraining the molecules generated
from yi to have property yi no matter what value z takes, we found that it does not necessarily
evaluate at meaningful values of z when sampled randomly from p(z). This roughly corresponds to
the notion that not all combinations of “style” and property are physically attainable; ideally for style
transfer we would like the generated molecule to stay “close” in structure to the original molecule
that we intended to modify. When estimating (gradients of) the soft constraint term Ldisent(θ, ω),
we found it advantageous to use samples of z which correspond to encodings of actual data points, as
opposed to random samples from the prior. We approximate expectations with respect to p(x) by
looking at the so-called marginal posterior; we note that

p(z) =

∫
pθ(z|x)pθ(x)dx ≈

1

N

∑
j

pθ(z|xj) ≈
1

N

∑
j

qφ(z|xj),

where the first approximation uses the empirical data distribution as an approximation to the model
marginal pθ(x), and the second uses our variational posterior approximation qφ(z|x). We define this
quantity as q(z) = 1

N

∑
j qφ(z|xj), a mixture of Gaussians, which we can sample from by drawing

random values from our dataset and then drawing from their encoding distributions.

When we use this in estimating gradients of the soft constraint, we can use samples from the same
minibatch, exactly corresponding to a property transfer task. That is, for any particular yi in the
dataset, we can estimate

Ep(z)∇θ,ω‖fω(gθ(z,yi))− yi‖2 ≈ Eq(zj |xj)∇θ,ω‖fω(gθ(z,yi))− yi‖2.

for any uniformly randomly sampled j 6= i. By sampling zj from q(zj |xj) where j 6= i, we make
sure that all the label information decoder is receiving comes from the actual yi that is feed to the
decoder and zj does not include any information about label. This can be evaluated easily by simply
evaluating the penalty term of Eq. (7) twice per minibatch; once as in Eq. (7), and once to approximate
Ldisent(θ, ω) by permuting the properties in the minibatch to be assigned to incorrect molecules. We
detail the training algorithm in the following algorithm block.

Algorithm 1 Training algorithm

1: Initialize pθ(x|z,y), qφ(z|x), fw
2: for i = 1, 2, . . . , N (maximum epoch number) do
3: for j = 1, 2, . . . , L do
4: sample a minibatch D = (X,Y) = {xi,yi)}Mi=1 of M samples, where L×M = N ,
5: Randomly permute the property set Y to obtain Y

′
and define a label permuted mini

batch D
′
= (X,Y

′
) = {xi,y

′

i}Mi=1,
6: Update generative model parameter θ with:

θj = θj−1 − α(−∇θLELBO(θ, φ, ω) +
λ1
2

∑
(xi,yi)∈D′

Eq(z|xi)∇θ‖fω(gθ(z,yi))− yi‖2)

7: Update recognition model parameter φ with: φj = φj−1 − α(−∇φLELBO(θ, φ, ω))
8: Update property predictor model parameter ω with:

wj = wj−1 − α(λ2
2

∑
(xi,yi)∈D

Eq(z|xi)∇ω‖fω(gθ(z,yi))− yi‖2

+
λ1
2

∑
(xi,yi)∈D′

Eq(z|xi)∇ω‖fω(gθ(z,yi))− yi‖2)

10

	Introduction
	Background
	Conditional generation by disentangling
	Experiments
	Conclusion
	Appendix
	Style transfer demo
	Molecule property optimization
	The regulariser and its relation to the mutual information maximization
	Architecture and Training procedure description
	Gradient estimation

