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Abstract

As experimental efforts are costly and time consuming, computational characteri-
zation of enzyme capabilities is an attractive alternative. We present and evaluate
several machine learning models to predict which of 983 distinct enzymes, as
defined via the Enzyme Commission (EC) numbers, are likely to interact with a
given query molecule. We frame this “enzyme promiscuity prediction” problem
as a multi-label classification task. We utilize inhibitor and unlabeled data to
train prediction models that can take advantage of known hierarchical relation-
ships between enzymes. We compare these models with alternatives that ignore
hierarchical structure and with molecular similarity approaches. We report that
hierarchical multi-label neural networks are the best model for solving this problem,
outperforming other machine learning and similarity-based methods.

1 Introduction

Characterizing activities of enzymes on substrates promises to play a critical role in advancing
biological discovery and biomedical engineering applications. Enzymes are traditionally assumed
specific, acting on a specific molecule. The Enzyme Commission (EC) number nomenclature, which
assigns EC numbers to enzymes based on experimental evidence of enzyme-catalyzed reactions [1],
describes such specificity. Four numbers separated by periods (e.g. 1.2.1.75) provide a tree-structured
hierarchical classification of enzyme function. At the top level, there are 7 potential classes of
enzymes (numbered 1-7). Classes are further divided into sub-classes, sub-subclasses, and finally
individual enzymes at the leaf level of the hierarchy. Despite widespread use, EC classification does
not reflect the diverse range of molecules that enzymes catalyze. Importantly, many enzymes, if
not all, have promiscuous activities such that they act on substrates other than those they evolved to
transform [2-5]. Despite efforts in cataloguing enzyme activities on various substrates in databases,
comprehensive characterization of enzyme promiscuity remains elusive. Some prior works on
predicting the promiscuity of enzymes are rule-based, e.g., [6-10], predicting enzymatic products for
a given a query molecule. More recent efforts utilize support vector machines (SVMs) to evaluate
the promiscuity of four specific enzymes, applying active learning to recommend substrates for
experimental testing to obtain new labels and thereby improve classification accuracy [11].
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An established practice in biological engineering is to assess the promiscuity of an enzyme on a query
molecule using substrate similarity. Molecular similarity is calculated between the query molecule
and the native substrate(s) that is known to be catalyzed by the enzyme [12]. Similarity can be
computed on molecular graphs using subgraph isomorphism [13] or on molecular fingerprints, binary
feature vectors of predetermined size (e.g., PubChem fingerprint [14], Extended-Connectivity (ECFP)
[15]). There is no consensus however on a similarity level that deems a query molecule sufficiently
similar to a native substrate. Further, while substrate similarity is widely used in metabolomic
engineering practice, there is currently no large-scale systematic evaluation of the effectiveness of
this metric in predicting enzyme promiscuity across enzymes or enzyme classes.

We investigate in this paper several data-driven approaches aimed at predicting the enzyme classes,
as defined via their Enzyme Commission (EC) numbers, that are likely to interact with a given query
molecule. We refer to this problem as the “enzyme promiscuity prediction” problem, and we do not
distinguish amongst the types of underlying promiscuity. In addition to similarity-based approaches,
we develop a combination of novel as well as established machine-learning models that frame the
problem as multi-label classification, where each predicted label corresponds to an EC number. As
experimentalists have limited resources to confirm predictions via wet-lab experiments, maximizing
precision is a key concern. We therefore evaluate the performance of our models using metrics such
as R-precision (R-PREC) that assess the model’s correctness among top-ranked molecules that are
predicted to interact with a particular enzyme. A model with high R-PREC has a high probability of
ranking positive molecules ahead of negative molecules. The top-ranked molecules are naturally the
first ones that the user will consider for experimental testing. Therefore, a model with high R-PREC
on a test set is most likely to be most useful for end users.

2 Methods

2.1 Data collection

All available positive and inhibitor molecules were collected from the BRENDA database, excluding
co-factors because these metabolites are common across enzymatic reactions. The Morgan fingerprint
(with a radius of 2) was used to represent each molecule, with 2048 binary features [15]. Not all
compound names in BRENDA could be mapped to a specific molecular structure. By the end of the
conversion process from names in BRENDA to Morgan fingerprints, we identified 25,872 positive
pairings between molecules and EC numbers, based on 8,295 unique molecules. Within this set of
molecules, we also identified 13,087 inhibiting interactions, based on 2,165 unique inhibitors. Some
individual enzymes had limited positive data. We therefore predicted promiscuity for enzymes that
had a minimum of 10 positive examples. There was sufficient data to train classifiers for 983 distinct
EC numbers. Only 885 of these enzymes had known inhibitors. As there were not many enzymes
classified for the recently established top level class (number 7), we only used data for classes 1-6.

The data was further organized in a tree hierarchy to match the structure of the EC nomenclature.
There were 6 nodes at the class level (top of hierarchy), 50 nodes at sub-class level, 146 nodes at
sub-subclass level, and 983 leaf nodes (distinct EC numbers). At all non-leaf nodes in the hierarchy,
positive examples consisted of the union of all positive examples at any child. Similarly, inhibitor
(hard negative) data consisted of inhibitors at any child unless already labelled positive due to a
positive label from any other child node. At each node, any molecule that is not positive nor an
inhibitor is considered unlabeled. Of the 8,295 molecules that were collected from BRENDA, each
with 983 labels indicating the molecule’s interaction with each enzyme, 20% were picked at random
and saved for testing, ensuring that both the positive and the negative classes were represented for
each enzyme.

2.2 Models

We developed and evaluated five models with different levels of information sharing for the enzyme
promiscuity prediction task.
k-NN Similarity (No sharing) - Each enzyme-molecule pair in the test set was scored by computing
the mean structural similarity between the test molecule and the enzyme’s k most similar positive
molecules in the training set. Hyperparameter k was chosen via a grid search 3-fold cross validation
over the training set, maximizing Average Precision.
No-Share RF (No sharing) - an independent Random Forest (RF) classifier with 50 decision trees
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was built for every EC Number. Hyperparameters defining the minimum size of any decision tree’s
terminal node were set via a grid search 5-fold cross validation, maximizing Average Precision.
Hierarchical RF (Greedy Top-Down Hierarchical Sharing) - A hierarchical cascade of random
forests (RFs) was trained, with one RF predictor at each internal node and leaf node of the tree. Each
of the 6 top-level enzyme categories had a root predictor trained to produce probabilistic predictions
given data and binary labels. Then, an RF regressor at each lower-level node was trained to predict
the residual error of the estimator at the parent node [16]. The overall probabilistic prediction at a
node is thus formed by adding its prediction to those from all preceding levels (thresholding to keep a
valid probability in the unit interval). Hyperparameter tuning was performed in the same way as for
No-Share RF.
Multi-Label NN (Horizontal Sharing) - A fully connected, 4-layer, Multi-Label Neural Network
(NN) was trained to predict a label corresponding to each of the 983 EC Numbers. In this way, all
EC Numbers share a common feature transformation trained to improve performance across all EC
Numbers. Network hyperparameters (hidden layer size and dropout probability) were chosen via a
random search 3-fold cross validation, maximizing Mean Average Precision across EC Numbers.
HMCN-F (Horizontal Plus Hierarchical Sharing) - We implemented a state-of-the-art NN archi-
tecture for multi-label classification called the Hierarchical Multi-label Classification Network (known
as HMCN-F, where F indicates it is feed-forward) [17]. Hyperparameter tuning was performed in the
same way as for Multi-Label NN.

2.3 Training methods – confidence weighting of unlabeled data

Providing a per-example weight (a scalar positive value) used to make some examples more important
during training is a common technique to overcome label balance issues or account for unlabeled data
that may unknowingly contain positive examples [18]. Ultimately, we assign an overall weight to
each molecule-enzyme pair that is the product of a scalar similarity weight and a scalar label weight.
The similarity weight is used to denote our confidence in the provided positive or negative label. It is
set to 1 for positive examples and inhibitors. Each unlabeled molecule is assigned a negative label
together with a similarity weight set to a scalar between 0 and 1 computed as one minus the maximum
structural similarity found between the unlabeled molecule and all molecules in the positive set. The
label weight is equal for all examples of the same label. It is set to 1 for all positive examples, and for
negative examples it is assigned to enforce that the aggregate weight of samples with negative label is
equal to aggregate weight of samples with positive label for each EC Number.

3 Results

3.1 Comparing models without accounting for known inhibitors

We first consider training without including inhibitor information. That is, all inhibitors are treated as
unlabeled molecules, and are thus assigned similarity-based confidence weights. We also show results
of a baseline ‘Random’ model, where every enzyme-molecule pair in the test set is assigned a value
selected from a uniform distribution between 0 at 1. We measured the performance of our models
via three metrics: Mean Area Under the Receiver Operating Characteristic (Mean AUROC), Mean
Average Precision (Mean AP) and Mean R-Precision (Mean R-PREC) [19]. Each overall summary
score is respectively computed by taking the mean of per-enzyme scores across all enzymes in the
corresponding dataset (Figure 1A-C). We also measure the relative performance of the models by
ranking them on each of the 983 binary classification tasks (one per EC Number) and then summarize
the results by computing the average rank. We repeat this for each of the performance metrics
(AUROC, AP and R-PREC) (Figure 1D).

The results show several trends. k-NN Similarity is a strong baseline for our classification task, how-
ever, it is outperformed by almost all machine learning models. In general, we see that increasing the
degree of information-sharing across EC Numbers increases performance, with HMCN-F (horizontal
+ hierarchical sharing) showing the best mean scores and the best ranks across all three metrics. The
only exception to this rule is that Hierarchical RF performs worse than No-Share RF everywhere
except for average R-PREC rank. We believe this to be due to the greedy training of Hierarchical
RF, which limits its ability to fix any mistakes made at higher levels of the hierarchy. Overall, these
results illustrate that machine learning models are to be strongly preferred to similarity with regards
to R-PREC (Figure 1D).
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Figure 1: Evaluation of machine learning models trained without including inhibitor information and evaluated
using the Full Test Set. (A) Mean AUROC, (B) Mean AP, (C) Mean R-PREC, and (D) Average rank per method
(lower is better).

3.2 Comparing models while accounting for inhibitors

To evaluate the impact of including known negative examples in the form of inhibitors, we retrained
our models including inhibitor information, thus setting their similarity weight to 1. We test these
models using the same framework as in section 3.1, while also providing a comparison between
each model trained with and without accounting for inhibitors (Figures S1 and S2). The results
show that all four models, when trained with inhibitor information, improve their performance in
terms of average R-PREC rank (Figure S2), and most models also improve with regards to the other
metrics. Thus, the best model for the enzyme promiscuity prediction task is the HMCN-F trained
with inhibitor information.

We also tested all models, trained with and without inhibitors, on an “Inhibitor Test Set” and on an
“Unlabeled Test Set”. The Inhibitor Test Set contains only positive and inhibitor test interactions,
whereas the Unlabeled Test Set contains only positive and unlabeled interactions in the same ratio as
in the Inhibitor Test Set. The results show that inhibitors are harder to distinguish from positives than
the unlabeled are, thus confirming that they are hard negative examples (Figure S3).

4 Conclusion and Discussion

This work proposed and evaluated several methods to predict enzyme promiscuity on a query molecule.
Our results show that sharing information both horizontally across EC Numbers and vertically across
the EC hierarchy results in the highest gains in prediction quality. Indeed, the HMCN-F trained with
accounting for inhibitor information is the best model for the enzyme promiscuity prediction task,
achieving a Mean R-PREC of 0.359 across 983 EC numbers. An R-PREC of 0.359 represents a useful
hit rate for wet-lab experimentation: for a typical enzyme, slightly more than 1 in 3 wet-lab trials
would succeed if we selected the top-ranked molecules in our test set. Furthermore, our experiments
show that inhibitors are hard negative examples. Indeed, HMCN-F performs with a Mean R-PREC
of 0.955 on the Unlabeled Test set, while yielding a Mean R-PREC of 0.873 on the Inhibitor Test
Set, indicating that inhibitors are harder to distinguish from positives when compared to unlabeled
molecules.

The work presented here can be improved by integrating alternative methods from the PU learning
literature [20, 21] and by considering learned representations that better capture molecular structure
than binary fingerprint vectors, e.g. [22]. While there are works that use sequences to predict
protein function in terms of GO terms [23, 24] and to predict EC numbers [25], the problem solved
within predicts enzyme classes that act on a query molecule. This problem is pressing in synthetic
biology and biological engineering applications when constructing biochemical conversion routes
to synthesize valuable specialty chemicals such as biofuels, solvents, and polymers [26]. This
problem is also important when constructing biodegradation pathways of environmental pollutants
and xenobiotics. Our tool can be combined with route exploration and construction tools [27] to
allow for novel transformation steps that are not currently documented in existing databases.
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Appendix

Figure S1: Mean scores showing results both for models trained with and without inhibitor information. (A)
Mean AUROC, (B) Mean AP, (C) Mean R-Prec. The vertical bars indicate +/- 1 standard deviation.

Figure S2: Average rank across metrics for all proposed models.
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