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Abstract

Machine learning algorithms for generating molecular structures offer a promising
approach to drug discovery. We cast molecular optimization as a translation
problem, where the goal is to map an input compound to a target compound with
improved biochemical properties. We observe that when generated molecules
are reiteratively fed back into the translator, compound attributes improve with
each step. We demonstrate this finding is invariant to the choice of translation
model, making this a “black box" algorithm. We call this method Black Box
Recursive Translation (BBRT), a new inference method for molecular property
optimization. This simple, powerful technique operates strictly on the inputs and
outputs of any translation model. We obtain results competitive with state-of-the-art
performance on molecular property optimization tasks using our simple drop-in
replacement with well-known sequence and graph-based models. Our method
provides a significant boost in performance relative to its non-recursive peers with
just a simple “for" loop. Lastly, BBRT is interpretable, allowing users to map the
evolution of newly discovered compounds from known starting points.

1 Introduction

Automated molecular design using generative models offers the promise of rapidly discovering new
compounds. A recent paradigm treats molecular optimization as a translation task where the goal is
to map an input compound to a target compound with favorable properties [Jin et al.,[2019b]. We
extend this framework to unconstrained molecular optimization by treating inference as a first-class
citizen. We find that generated molecules can be recursively fed back into the model to generate
compounds with improved property values. Moreover, we note an apparent invariance to the choice
of translation model and argue this finding is relevant considering the emphasis on new molecular
representations [[Gomez-Bombarelli et al., 2018| Jin et al., 2018 |Dai et al., 2018 |Li et al., 2018
Kusner et al.| [2017} Krenn et al.|,|2019]]. Using our method, Black Box Recursive Translation (BBRT)
(Figure[I)), we leverage different sequence- and graph-based models from the literature for property
optimization benchmark tasks. Through an exhaustive exploration of various decoding strategies, we
demonstrate the empirical benefits of using BBRT. We introduce simple ranking methods to decide
which outputs are fed back into the model and find ranking to be an appealing approach to secondary
property optimization. Finally, we demonstrate how BBRT is an extensible tool for interpretable and
user-centric molecular design applications.
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Figure 1: Black Box Recursive Translation (BBRT).

2 Framework

2.1 Model

As a baseline, we use a sequence-to-sequence (Seq2Seq) model [Sutskever et al.| |2014] which
learns parameters ¢ that estimate a conditional probability model P(y|x;6), where 6 is estimated by
maximizing the log-likelihood:

Le)= > logP(ylz,0)

(z,y)€(X,Y)

The conditional probability is typically factorized according to the chain rule: P(y|z;0) =
[T, P(ytly<t,z,8). Our Seq2Seq model uses an encoder-decoder architecture, where the encoder
and decoder are both parameterized by recurrent neural networks (RNNs) with Long Short-Term
Memory (LSTM) cells [Hochreiter and Schmidhuber;,[1997], and attention [Bahdanau et al.|[2014] for
decoding. The hidden representations are non-probabilistic and are optimized to minimize a standard
cross-entropy loss with teacher forcing. Decoding is performed using both a deterministic strategy
(beam search [Graves| [2012} Boulanger-Lewandowski et al., 2013]]) and a stochastic decoding strategy
using a top-k sampler [Fan et al.,|2018]], which restricts sampling to the £ most-probable tokens at
time-step t. This corresponds to restricting sampling to a subset of the vocabulary U C V. U is the
subset of V' that maximizes >, .y po(ye|yy<t, 2):

Po (Yt |2U<t75”) y €U
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2.2 Recursive translation

For translation models, the inference task is to compute y* = arg max p(y|z, ). Given (x,y) €
(X,Y) as a sequence pair where by construction (z, y) has high chemical similarity and y scores
higher on a prespecified property compared to =, we construct training data using the ZINC dataset
[Irwin et al., 2012]] by sampling molecular pairs (X, Y") with Tanimoto similarity sim(X,Y) > 7
and property improvement 6(Y") > §(X) for a given property d. In contrast to|Jin et al.|[2019b], we
only enforce the similarity constraint for the construction of training pairs.

At test time, we are interested in recursively inferring new sequences. Let y; denote a random

sequence for recursive iteration ¢ and let {yfk) S | be a set of K outputs generated from pp (y;|x)
when ¢ = 0. To prioritize sequences for the next iteration, we use a scoring function .S to compute the
best of K outputs denoted as ¢;. For ¢ > 0, we infer K outputs from py(y;|9;—1). After n recursive
iterations, we ensemble the generated outputs {yo, y1, - . . 7yn}§:1 and score the sequences on a
desired objective. For property optimization, we return the arg max.

3 Results

To highlight the generality of our method, we apply recursive translation to established sequence
and graph-based translation models [H and compare against a number of established models in the
literature including the Objective-Reinforced Generative Adversarial Network (ORGAN; |Guimaraes
et al.|2017), Junction Tree Variational Autoencoder (JT-VAE; Jin et al.|[2018)), Graph Convolutional

"'We denote BBRT applied to model X as ‘BBRT-X’



Penalized logP QED

Method 1st 2nd 3rd Ist 2nd 3rd

ZINC-250K 4.52 4.30 423 0948 0948 0.948
ORGAN 3.63 3.49 344 0.896 0.824  0.820
JT-VAE 5.30 4.93 449 0925 0911 0.910
GCPN 7.98 7.85 7.80 0948 0.947 0.946
JTNN 5.97 4.96 471 0.948 0.948 0.948
Seq2Seq 4.65 4.53 449 0948 0948 0.948

BBRT-JTNN 10.13  10.10 991 0948 0948 0.948
BBRT-Seq2Seq 6.74 6.47 642 0948 0948  0.948

Table 1: Top 3 property scores on penalized logP and QED tasks.
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Figure 2: (Left and Center): Top 100 logP generated compounds under BBRT-Seq2Seq, BBRT-JTNN,
and their non-recursive counterparts. (Right): Diversity of top 100 generated compounds under both
BBRT models and the top 100 compounds from the training data.
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Policy Network (GCPN; You et al.|[2018]), Variational Junction-Tree Encoder-Decoder (JTNN; Jin
et al. 2019b), and Seq2Seq. We report the top three scores (penalized logP and QED) for each
model (Table 1). We find that for logP optimization, BBRT-JTNN significantly outperforms all
baseline models including the JTNN, Seq2Seq, and BBRT-Seq2Seq. BBRT-Seq2Seq outperforms
Seq2Seq, highlighting the benefits of recursive inference for both molecular representations. For
QED optimization, the two translation models and BBRT variants all find the same top three property
scores.

In Figure 2] we report the top 100 logP compounds generated by both BBRT applications relative to
their non-recursive counterparts and observe significant improvements in logP from using BBRT. Con-
sistent with [Jin et al., 2019a], we also report diversity as DIV(Y") = W Zer Zy’GY,y’ 1-—
5(y,y’) of the generated candidates for both BBRT models and the top 100 logP compounds in
the training data. We find BBRT-JTNN produces logP compounds that are more diverse than the
compounds in the training data, while the compounds generated by BBRT-Seq2Seq are less diverse.

3.1 Empirical properties of recursive translation

We perform a sequence of ablation experiments to better understand the effect of various BBRT
design choices on performance. We highlight the variability in average logP from translated outputs
at each iteration with different decoding strategies (Figure 3]A left) and scoring functions (Figure B]A
right).

For non-recursive and recursive translation models, stochastic decoding methods outperformed
deterministic methods on average logP scores (Figure BA left) and average pairwise diversity (Figure
[BB) for generated compounds as a function of recursive iteration. Non-greedy search strategies are
not common practice in de novo molecular design [Gomez-Bombarelli et al.| 2018 [Kusner et al.|
2017, Jin et al.,|2019b]. While recent work emphasizes novel network architectures and generating
diverse compounds using latent variables [Gomez-Bombarelli et al.| [2018| [Kusner et al.,[2017, Jin
et al.| 2018]], we identify an important design choice that typically has been underemphasized. This
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Figure 3: Ablation experiments using BBRT-Seq2Seq. A. (Left): Mean logP from 900 translations
as a function of recursive iteration for three decoding strategies. Dotted lines denote non-recursive
counterparts. (Right): Mean logP as a function of recursive iteration for four scoring functions.
B. (Left): Diversity of generated outputs across recursive iterations for logP translation. (Right):
Diversity of generated outputs across recursive iterations for QED translation.

trend has also been observed in the natural language processing (NLP) literature where researchers
have recently highlighted the importance of well-informed search techniques [Kulikov et al.| 2018]].

Regardless of the decoding strategy, we observed improvements in mean logP with iterations when
using BBRT. When optimizing for logP, we observed that a logP scoring function quickly discovers
the best scoring compounds while secondary scoring functions improve logP at a slower rate and do
not converge to the same scores. This trade-off highlights the role of conflicting molecular design
objectives. For Figure3]A, the standard deviation typically decreased with iteration number n. As
property values converge to a certain range, we investigated whether BBRT produces compounds
with less diversity. In Figure BB we show average pairwise diversity of translated outputs per
recursive iteration across three decoding strategies and observe decay in diversity for logP. For the
best performing decoding strategy, the top-5 sampler, diversity decays from approximately 0.86 after
a single translation to approximately 0.78 after n = 25 translations. This decay may be a product
of the data—higher logP values tend to be less diverse than a random set of compounds. For QED
(Figure BB right), we observe limited decay. Differences in decay rate might be attributed to task
variability, one being extrapolative and the other interpolative.

4 Discussion

Motivated by molecular optimization as a translation task, we develop BBRT, a simple algorithm that
applies a decoding and scoring strategy at test-time and recursively feeds the output of translation
models back into the same model for additional optimization. We apply BBRT to well-known models
and produce competitive results with state-of-the-art performance for different property optimization
tasks. For future work, we will consider other scoring methods including molecular docking to the
target of interest. Lastly, as BBRT is limited by the construction of labeled training pairs, we plan
to extend translation models to low-resource settings, where property annotations are expensive to
collect.
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