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Abstract

Recent work has shown how Bayesian optimization (BO) is an efficient method for
optimizing expensive experiments such as chemical reactions. However, in previous
studies, each optimization has been started from scratch with no information about
previous or similar chemical optimization studies. Therefore, BO can still require
more iterations than many experimental budgets provide. Here, we overcome this
challenge using multi-task BO. Through in silico benchmarking studies, we show
how past experimental data can be leveraged to improve the quality and speed of
reaction optimization.

1 Introduction

Finding the optimal conditions for a chemical reaction is an essential task in the fine chemicals
industry. Whether it is optimizing the recipe for a new advanced material or the conditions for a
reaction in a multi-step pharmaceutical synthesis, this task is equally ubiquitous as it is difficult.
Previous estimates have shown that the parameter space for a single catalytic reaction is upwards of
50 million potential combinations [1]. Given that the constraints of real experimental systems are in
the hundreds to thousands of experiments per day [2], chemists and engineers must judiciously select
experiments from this large parameter space to find optimal conditions.

Previous work has shown that Bayesian optimization (BO) has the potential to quickly find optimal
reaction conditions. Schweidtmann et al. were the first to demonstrate this using the BO algorithm
TSEMO to optimize several reactions using a flow chemistry reactor [3]. Since then, several case
studies have shown the applicability of BO[4, 5], including a recent preprint, which conducted a
systematic study and showed that BO performs well on several benchmarks for chemical reactions
[6].

However, in each of these studies, BO was initialized without incorporation of prior knowledge about
the reaction being optimized. This is the opposite of a chemist’s intuition about reaction optimization;
they would bring to bear results from previous optimization campaigns they had run. Here, we ask if
this same prior knowledge can be used to accelerate BO algorithms.
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(a) (b)

Figure 1: Red is for Task one, and blue is for Task two. Dotted lines are the ground truth. Dots are
training observations, and translucent lines are posterior samples of the trained model for each task.
(a) Training a multi-task model with five observations for both tasks (b) Training a multi-task model
with twenty observations for Task one and five observations for Task two. The extra observations in
Task one improve the posterior predictions for Task two.

We rely on the framework of multi-task BO, first introduced by Swersky et al [7]. The idea is to
replace the standard probabilistic model in BO with a multi-task model. As illustrated in a simple
example in Figure 1, a multi-task model trained on data from a related task is better able to predict
the outcomes of a new task than the equivalent single task model. Since the model is arguably the
most important part of a BO algorithm [8], this improved prediction accuracy is likely to lead to
better optimization performance.

In the following sections, we first review the multi-task BO framework before presenting results
from three benchmarking studies that illustrate the advantage of using multi-task BO in reaction
optimization. We investigate the influence of the number of data points from previous tasks on the
speed of optimization, and we examine whether using a dissimilar reaction for pre-training will have
a negative influence on the reaction optimization.

2 Multi-task Bayesian optimization

Bayesian optimization (BO) is a strategy for optimizing black-box functions where a probabilistic
model can be used as a surrogate for a function in which evaluation/point generation is expensive,
e.g. performing a chemical experiment. Within a BO strategy, a Gaussian process (GP) model is
commonly used for specifying prior distributions over functions f : χ→ R given that any finite set
of N points X = {xn ∈ χ}Nn=1 induces a Gaussian distribution on RN . The GP is defined by its
mean function m : χ → R and a positive definite covariance, or kernel function K : χ × χ → R.
Using these two functions, the posterior is parameterized by:

µ(x; {xn, yn}, θ) = K(X,x)>K(X,X)−1(y −m(X)), (1)

Σ(x,x′; {xn, yn}, θ) = K(x,x′)−K(X,x)>K(X,X)−1K(X,x′). (2)

To determine which experiments to perform next, an acquisition function a(x; {xn, yn}, θ) is used,
which specifies the quality (information gain) of a suggested experiment given a model and its
parameters. By optimizing the acquisition function, a myopic estimate of the best next point is found
[8]. The expected improvement criterion (EI) is the acquisition function used within this work:

aEI(x; {xn, yn}, θ) =
√

Σ(x,x; {xn, yn}, θ)(γ(x)Φ(γ(x)) + N(γ(x); 0, 1)), (3)

γ(x) = (ybest − µ(x; {xn, yn}, θ))/
√

Σ(x,x; {xn, yn}, θ). (4)

Multi-task GPs can be used on vector-valued functions f : χ→ RT , where each of the T outputs can
be seen as solutions to unique regression tasks. A covariance function, or kernel, K((x, t), (x′, t′))
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(a) Same Mechanism (b) Different Mechanism (c) C-N Cross Coupling

Figure 2: Results of simulated optimization of reactions using single task (STBO) and multi-task
(MTBO) strategies. Each strategy was run for ten iterations, and the mean and 95% confidence
interval of ten random repeats are shown. (a) Comparison on a benchmark where MTBO is jointly
trained on prior data from a reaction with the same mechanism as the one being optimized. n
represents the number of auxiliary data points. (b) Comparison on a benchmark where MTBO is
jointly trained on prior data from a reaction with a different mechanism to the one being optimized. n
represents the number of auxiliary data points. (c) Comparison of a single task (STBO) and multi-task
(MTBO) optimization of Pd-catalyzed C-N cross-coupling reaction [10]. Both optimizations have
similar performance.

between input-task pairs must be defined to understand the relationship across inputs and tasks. The
intrinsic model of coregionalization transforms a latent function to yield the outputs, and equation 5
is one example of such a function.

Kmulti((x, t), (x
′, t′)) = Kt(t, t

′)⊗Kx(x,x′) (5)

⊗ is the Kronecker product, Kx is a kernel representing the relationship between inputs, while Kt is
a kernel that represents the relationship between tasks. Transferring BO to apply to additional related
tasks can simply be done by restricting new observations to only belong to the new task (chemical
reaction) and conducting optimization of the acquisition function w.r.t. the task at hand [7].

3 Results

We optimize in silico benchmarks that represent real reactions. The first two benchmarks are a series
of hand-crafted kinetic models designed as tests for different optimization strategies [9]. The third
benchmark is based on data published by Baumgartner et al. for a Pd-catalyzed C-N cross-coupling
[10]. This data contains optimizations of the same reaction with different substrates, providing a
perfect chance to test how multi-task BO works with real data. To build the benchmark, a Bayesian
neural network is trained to act as an oracle that the optimization strategies can query[6, 11]. For
all benchmarks, the decision variable domain has both continuous variables (e.g., temperature)
and categorical variables (e.g., catalysts). To handle the categorical variables, we use the "basic"
method from Garrido-Merchán et al., which rounds the outputs of the internal acquisition function
optimization to a one-hot encoding [12].

Figures 2a and 2b compare the performance of a single task (STBO) and a multi-task (MTBO)
optimization in finding the optima of the hand-crafted kinetic model. The benchmark has three
continuous variables (catalyst concentration, reaction time, reactor temperature) and one categorical
(choice of catalyst) variable available to find the maximum yield. Latent hypercube sampling is
performed to acquire the initial auxiliary dataset for MTBO [13]. Figure 2a shows a case where the
auxiliary and optimised tasks (i.e., reactions) for MTBO have the same mechanism with different
parameters. MTBO clearly improves the optimization speed, and adding more observations to the
auxiliary dataset both improves the speed and reliability of the optimization (i.e., lower variance).
A similar trend is seen in Figure 2b where the mechanism differs slightly between the auxiliary
and optimization tasks; the optimization task introduces a side reactions that consumes one of the
reactants. Despite this change in mechanism, the MTBO still has a significant speed and reliability
advantage over STBO.
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Figure 2c illustrates what might happen when the mechanism changes significantly from the auxiliary
task to the optimization task. Here, the substrate changes from an aniline to amide, and as the original
paper notes, this changes the optimal catalyst and residence time [10]. Therefore, the auxiliary data
does not provide much benefit in improving the quality of the model. Despite this, we observe that
the difference between STBO and MTBO is small in this case, indicating that negative transfer does
not occur.

4 Related Work

In this work, we show that a model optimised for one task, specifically a chemical reaction, may
be able to generalise the information within the task and subsequently perform better on a different
task. Notably, we were able to achieve good performance using relatively few datapoints. This
contrasts to reinforcement learning approach to optimising reactions, which requires thousands of
pretraining iterations for each combination of decision variables and objectives [14]. Other work has
built multi-task models for prediction of site selectivity but not incorporated reaction conditions or
optimization[15]. Our work also differs from previous optimization work in that it aims generalize
across changes in in mechanism[16].

5 Conclusions

Reaction optimization is an essential task in the fine chemicals industry. Yet, it is often time- and
labor-intensive. Here, we demonstrate that multi-task Bayesian optimization (BO) enables closed-
loop optimization of reactions by leveraging data from past experiments. Our benchmarking suggests
that using past data will have a positive or, at worst, null effect on the quality and speed of the
optimization. We therefore foresee multitask BO as an effective way to overcome the problem of
limited experimental resources in chemical laboratories. Both academic and industrial labs have
historical data, often going back years, and our technique would allow them to utilize that data to
automate and accelerate reaction optimization.
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