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Abstract

Graph neural networks have been widely adopted to accelerate the screening of
materials. Most existing studies assume that the ground truth data are generated
through a deterministic, unbiased process, which might break down for the simu-
lation of complex materials. In this work, we find that a multi-task graph neural
network that learns from a large number of biased, noisy data and a small number
of unbiased data can reduce both random and systematic errors. This allows us
to use cheaper, unconverged simulations to accelerate the screening of a class of
polymer electrolyte materials by 22.8 times.

1 Introduction

Graph neural networks have been widely adopted for accelerating the discovery of molecular [1–5]
and solid materials [6–8] under the supervised learning framework. Most of these studies assume that
the ground truth data are generated through a deterministic, unbiased process, such as performing
quantum mechanical simulations1. However, this assumption might break down for more complex
materials and properties. First, the atomic structure of the material, i.e. inputs to a simulator, can
only be sampled via a stochastic process for complex materials like polymers and solids with defects.
Second, some property simulators, like molecular dynamics (MD), are intrinsically stochastic and
have large uncertainties on simulated properties. Finally, with a limited computation budget, the
simulation of complex materials may not converge which leads to systematic errors.

In this work, we aim to study how graph neural networks perform on predicting material properties
when the training data have significant random and systematic errors. In practice, researchers usually
simulate complex materials with multiple independent simulations on same material to reduce random
errors, and long-time simulation to reduce systematic errors. [9–11] We hope to demonstrate that
these errors can be reduced by learning from a large number of biased, noisy data and a small number
of unbiased data, reducing the need of redundant simulations.

We focus on a specific material design problem of discovering polymer electrolytes with a higher
ionic conductivity for lithium ion batteries[12–14]. Due to the computational cost to reduce random
and systematic errors, the previous computational studies for this problem only simulated around 10
materials [9–11]. In the scope of this class of materials, we hope to answer the following questions:

• By learning from data with large random errors, can a graph neural network predict the true
property with errors smaller than the random errors from data?

1In principle, quantum mechanical simulations like density functional theory are also stochastic. But the
uncertainty is small and usually neglected. They are also biased estimation of the true experimental property,
which is often not discussed in the context of supervised learning.
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Figure 1: (a) Illustration of the data generalization process. Monomers are sampled from a pharma-
ceutical database [15] to ensure synthesizability. (b) Multi-task learning architecture to reduce the
random and systematic errors from simulations.

• By learning from a large number of biased data and a small number of unbiased data, can a
multi-task graph neural network learn to reduce systematic errors from biased data?

• Combining the reduction of random and systematic errors, how much acceleration can we
achieve for screening polymer electrolytes?

We find affirmative answers for the first two questions. Using the combined model that reduces the
random and systematic errors, we successfully screened a polymer space including 6247 materials,
significantly larger than previous works. We believe that the ability of graph neural networks to
reduce random and systematic errors have broad implications for the screening of complex materials,
because the simulation of these materials often suffer from the large computational cost similar to the
polymer electrolytes.

2 Methods

2.1 Data generation

Polymer datasets As shown in Fig. 1(a), the ionic conductivity of the polymers are simulated via
a two-step process. The amorphous structure of the polymer is first sampled with a Monte Carlo
algorithm, and then the equilibrium structure is simulated with MD for k ns. We generate two datasets
by running two types of simulations: 1) 5 ns dataset: we sample equilibrium structure and run 5 ns
MD, obtaining conductivity for 876 polymers; 2) 50 ns dataset: we use the equilibrium structure from
5 ns dataset and run a much more expensive 50 ns MD, obtaining conductivity for 117 polymers.

For both datasets, there are significant random errors for simulated properties. Between these two
datasets, the 5 ns properties have systematic errors with respect to the 50 ns properties since the
former is not converged, but the random errors between them are highly correlated because they
begin with the same initial configuration.

Toy datasets We do not have access to the true property in the polymer datasets, which would
in principle require averaging multiple 50 ns simulations. To evaluate the model performance with
respect the true properties, we use the same polymers from 5 ns dataset and compute the LogP of each
polymer using Crippen’s approach [16, 17], which is a deterministic simulator. Then, we add different
levels of gaussian random noises into the LogP values to imitate the random errors in simulated
conductivities.
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Table 1: Random error reduction in the toy datasets with different noises and the 5 ns dataset

Dataset True RMSE Apparent RMSE Noise Std Estimated true RMSE

Toy (Std = 0) 0.048 0.048 0 0.048
Toy (Std = 0.08) 0.071 0.105 0.08 0.068
Toy (Std = 0.32) 0.128 0.334 0.32 0.096
Toy (Std = 1.28) 0.346 1.20 1.28 NaN
Toy (Std = 5.12) 0.517 5.18 5.12 0.767
5 ns polymer - 0.145 0.117 0.085

2.2 Network architecture

We employ a multi-task graph neural network to reduce both random and systematic errors as shown
in Fig. 1(b). We first encode the monomer structure as a graph G and use a graph neural network G
[6] to learn a representation for the corresponding polymer, vG = G(G).
To reduce random errors, we use the robustness of neural networks against random noises in the
training data, previously demonstrated in images [18] and graphs [19]. We assume that the computed
target property (e.g. conductivity) has a shared random error ε over the true property f(G),

t = f(G) + ε, (1)

where f is a deterministic function mapping from molecular graph to true property, and ε is a random
variable independent of G with zero mean. Note that ε should be a function of G in principle, but
similar noises in observed across polymers. By regressing over t, it is possible to learn f(G) even
when the noises are large [18] if we have enough training data. It is only possible to generate enough
training data with 5 ns simulations, so we use a feed forward network g1 to predict t5 ns with the
graph representation,

y5 ns = g1(vG), (2)

which aims to learn an approximation to the true property function f5 ns despite the random errors.
However, there is a systematic error between f5 ns and f50 ns due to the slow relaxation of polymers.
To correct this error, we perform a small amount of 50 ns simulation to generate data for the converged
conductivities. This correction can then be learned with a linear layer g2 using both predictions from
5 ns simulations and the graph representations,

y50 ns = g2(vG ‖ y5 ns), (3)

where ‖ denotes concatenation.

Finally, the larger 5 ns dataset and the smaller 50 ns dataset can be trained jointly using a combined
loss function,

Loss = (1− w) · 1

N5 ns

∑
G5 ns

(y5 ns − t5 ns)
2 + w · 1

N50 ns

∑
G50 ns

(y50 ns − t50 ns)
2, (4)

where w is a weight between 0 and 1.

3 Experiments

3.1 Random error reduction

We first study the toy dataset which we have access to the true property f(G) in Eq. 1. We train
the 5 ns branch of our network, i.e. set w = 0, with the toy dataset with different levels of noises.
Table 1 shows the true root mean squared errors (RMSEs) with respect to the original LogPs and
apparent RMSEs with respect to the noisy LogPs, using the toy dataset with different noise levels. We
observe that the true RMSEs become smaller than the noise standard deviation when it is larger than
0.08. This result shows that, on average, our model predicts LogP more accurately than performing a
simulation of LogP due to the existence of large noises in the simulation.

However, we do not have access to the true property for the 5 ns polymer dataset. So we can only
compute the apparent RMSE, not the true RMSE. To estimate the true RMSE, we assume that the
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Table 2: Systematic error reduction between differ-
ent methods.

Method MAE

No correction 0.528
Linear 0.152
Single-task 0.137± 0.025
Multi-task 0.093± 0.017
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Figure 1: Performances of the methods with less
training data from 50 ns dataset.

random errors for 5 ns MD conductivity follows a gaussian distribution. We can estimate the true
mean squared error (MSE) with

MSE(y, f(G)) = MSE(y, t)− E
G
[ε2], (5)

where MSE(y, t) is the apparent MSE and EG [ε2] is the variance of the gaussian noise (detailed
derivation in the appendice A). For the toy datasets, we find that this estimate gives results that
are close to the true RMSE, although some differences exist due to the relative small size of the
datasets. Our estimated true RMSE for the 5 ns polymer dataset is 0.085 log10(S/cm), smaller than
the standard deviation of random noise for running 5 ns simulations 0.117 log10(S/cm).

3.2 Systematic error reduction

To learn the systematic differences between 5 ns and 50 ns datasets, we co-train our model with both
datasets using 10-fold cross validations and w = 10−4 to predict 50 ns properties. We compare the
performance of our model with several baselines: 1) Linear. This baseline learns a linear model
to predict 50 ns properties from 5 ns properties, which does not consider the differences between
polymers; 2) Single-task. This baseline only uses the 50 ns branch of the model (w = 1), which
directly predicts properties from molecular structure instead of learning errors.

In Table 2, we find that our multi-task model outperforms both baselines. This shows that our
model learns a customized correction to each polymer, which performs better than an overall linear
correction to all polymers. In Fig. 1, we explore the performance of our model with less training data
from the 50 ns dataset. Although with large uncertainty, the performance of the multi-task model
decreases relatively slowly with less training data, and it seems to still have some correction ability
even with 13 training data points. This shows the advantage of co-training a larger 5 ns dataset
and a smaller 50 ns dataset – it is much easier to learn a systematic correction than predicting the
property from scratch. In contract, the performance of a single-task model directly predicting 50 ns
conductivity degrades much faster with less training data.

4 Estimation of the acceleration

The ability for a multi-task graph neural network to reduce random and systematic errors indicates
that redundant calculations that are performed on individual complex materials may not be necessary
in the context of material screening. To screen a space of 6247 polymers, we performed 876 5 ns
simulations and 117 50 ns simulations in total. These simulations take approximately 394,000 CPU
hours in total on NERSC Cori Haswell Compute Nodes. This only accounts for around 4.4% of the
computation needed to simulate all the polymers from the polymer space with 50 ns simulations,
corresponding to a 22.8-fold acceleration. The acceleration would be even larger if we consider that
multiple simulations are needed for each polymer to reduce the random errors from MD to match our
true prediction accuracy.
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A Estimate true prediction error from noisy data

We assume there exists a deterministic function f that maps from the polymer structure G to its true
target property. However, due to the random errors introduced by the initial configuration in MD
simulations, the simulated target property t has a small random error ε,

t = f(G) + ε, (6)

where ε follows a normal distribution with zero biasN (0, η). Here, we assume that ε is not a function
of G, i.e. different polymers have the same random error independent of their structure. This is
approximately correct based on the differences in conductivity of the same polymer between two
independent MD simulations in the log scale (Fig. 2).

To estimate the true prediction error of our model, we write our graph neural network model as a
deterministic function g that predicts polymer property based on their structure G,

y = g(G). (7)

Note that we use different labels for the predicted property y and the MD simulated property t.

Under these assumptions, the mean squared error between ML predictions and MD simulated
properties is,

MSE(y, t) = E
G
[(y − t)2] = E

G
[(y − f(G)− ε)2] = E

G
[(y − f(G))2] + E

G
[ε2]. (8)

Note that in the last step we use the fact that EG [ε] = 0.

The mean squared error between two independent MD simulations for the same polymer is,

MSE(t1, t2) = E
G
[(t1 − t2)2] = E

G
[(ε1 − ε2)2] = 2E

G
[ε2]. (9)

MSE(t1, t2) can be calculated from Fig. 2. Therefore, EG [ε2] ≈ 0.0137.

The mean squared error between ML predictions and the true target property, i.e. true prediction
error, can then be calculated with,

MSE(y, f(G)) = E
G
[(y − f(G))2] = MSE(y, t)− E

G
[ε2]. (10)
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Figure 2: Differences in conductivity of the same polymer between two independent 5 ns molecular
dynamics simulations.
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