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Abstract

Equivariant neural networks (ENNs) are graph neural networks embedded in R3

and are well suited for predicting molecular properties. The ENN library e3nn has
customizable convolutions, which can be designed to depend only on distances
between points, or also on angular features, making them rotationally invariant,
or equivariant, respectively. This paper studies the practical value of including
angular dependencies for molecular property prediction directly via an ablation
study with e3nn and the QM9 data set. We find that, for fixed network depth and
parameter count, adding angular features decreased test error by an average of 23%.
Meanwhile, increasing network depth decreased test error by only 4% on average,
implying that rotationally equivariant layers are comparatively parameter efficient.
We present an explanation of the accuracy improvement on the dipole moment, the
target which benefited most from the introduction of angular features.

1 Introduction

The discovery of novel molecules has been accelerated by advances in computational quantum
chemistry and machine learning assisted exploration of chemical space [1, 2, 3]. The successes have
been characterized by designing bespoke neural networks which have relevant properties “baked-
in,” such as parameter sharing across calculations on individual atoms, continuous convolutions,
invariance to atomic indexing, and invariance to rotation and translation [4, 5]. Meanwhile, there
has also been development on neural networks which are equivariant to group action [6], some with
molecules in mind [7, 8]. Equivariant neural networks can be seen as a super-set of invariant ones
because a group necessarily contains the identity element. The question considered in this paper can
loosely be stated as: When doing regression on scalar molecular properties, what is missing when
one employs only invariant layers in a neural network as opposed to including equivariant ones?

We explore this question using the QM9 benchmark [9, 10] by predicting quantum chemical properties
of small molecules. While the molecules can rotate and translate, affecting the molecule’s position
vectors, the QM9 properties are all scalar and invariant to translation or rotation. Here we compare
equivariant neural networks (ENNs) that predict rototranslationally invariant molecular properties but
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differ by whether their internal features are rotationally invariant (convolutions depend on distances)
or equivariant (convolutions depend on distances and angles). We also investigate whether increasing
depth in networks with rotationally invariant layers is comparatively effective at reducing test error.
The networks are implemented in the PyTorch [11] library e3nn [12] using the SE(3) equivariant
point modules. QM9 data handling and training routines were borrowed from SchNetPack [13].

Given atomic positions r ∈ R3×N and atomic features Fh, layer h of an e3nn produces atomic
features Fh+1 by Lh(r, Fh) = Fh+1. Fh is a collection of uh0 scalars Fh`=0 and uh1 vectors Fh`=1

flattened into a column by Fh = vec(Fh`=0 ⊕ Fh`=1). The total multiplicity of features at layer h is
uh = uh0 + uh1 . The rotation matrix R acts on Fh in block matrix notation by

RFh =

(
R`=0 0
0 R`=1

)(
Fh`=0

Fh`=1

)
=

(
1 0
0 R`=1

)(
Fh`=0

Fh`=1

)
. (1)

In this paper, we consider the case of rotationally invariant layers, which produce features that do not
rotate, i.e. u1 = 0, and compare their performance to rotationally equivariant layers, which produce
rotating features, i.e. u1 6= 0. In order to predict a rotationally invariant target value, the output
features, Fhmax = Fhmax

`=0 , do not rotate. The difference between networks lies in the equivariance
or invariance of their internal layers. We call networks containing only features that do not rotate
and rotationally invariant layers L0Nets, while networks containing rotating features and equivariant
layers are called L1Nets. A more general framing in terms of spherical harmonics can be found in
the e3nn library [12] . In said framing, features are seen as spherical harmonics of degree `.

1.1 Related Work

Molecular properties, which depend only on the atomic distance graph, are commonly predicted by
kernel methods or Gaussian process regression [14, 15, 16, 17] or graph neural networks [18, 19],
where ENNs are usually employed for predicting physical properties, which depend on atomic
displacement vectors [20, 21]. While kernel approaches are more data-efficient, graph neural networks
scale to larger amounts of data. Inspiration for our study came from literature on invariant and
equivariant ENNs for molecular property prediction. SchNet [4, 13] introduced atom-wise features
with continuous convolution. Tensor Field Networks [7] and Cormorant [8] generalized the approach
to angular-feature based rotation equivariant networks. In parallel, although aimed at voxelized data,
se3cnn [6] developed the gated nonlinearity. The library under consideration, e3nn, represents a
superset of Tensor Field Networks, SchNet, and se3cnn. Support for Cormorant’s so-called two-body
interaction has also been included in e3nn but is not considered in this experiment.

Although DimeNet [22] is the leading architecture on QM9 regression, it is not considered in our
analysis. Their use of directional message passing, while effective, is not trivially compatible with
SchNet, Cormorant, or e3nn. Their edge featurization using spherical Fourier-Bessel functions could
be incorporated rather simply, but investigation is left for future work.

While QM9 remains the gold standard for most machine learning studies, a new data set called
QM7-X [23] contains a wealth of tensor properties suitable for prediction with networks like e3nn or
Cormorant. SchNet and DimeNet cannot predict tensor quantities in their current incarnations.

2 Methods

We employ both an L0Net and an L1Net to do regression on scalar target values from the QM9
data set given molecular input data. A molecule is an unordered set of N ∈ N atoms, each with
position ra ∈ R3 and element Za which is represented as a one-hot scalar array. We parameterize
a neural network such that {(r1, Z1), ..., (rN , ZN )} 7→ F(r1, ..., rN , Z1, ..., ZN ) where we restrict
the image to be invariant to rotations and translations, as well as permutations in atomic indexing.
Every layer uses parameter sharing across atoms and the final step accumulates the value of every
atom with a symmetric function. A schematic of the entire architecture can be seen in Figure 1.

Atom-wise A dense layer applied to every atom with parameters shared across atoms. Given weights
Wu′u, bias bu, non-rotating, scalar features F on atom A at layer h with multiplicity u′ we write
Fh+1
uA =

∑
u′ Fhu′ AWu′u + bu′ . This layer is also used as a learned embedding of the atomic element.
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Radial Basis Function (rbf) The radial basis φ : R→ RB, expands d = ‖rb − ra‖ by

φ(d) =

{
cos2(π2

d−µB
µB+1−µB

) −1 ≤ d−µB
µB+1−µB

≤ 1

0 otherwise,
(2)

where 0 Å ≤ µB ≤ 11.1 Å is a sequence of B = 84 equally spaced “radial basis centers.”

Convolution The convolutional filter f consists of a learned scalar array radial function multiplied
by a multiplicity of spherical harmonics of degree `f . The filter is assigned an atomic index based on
the atom on which it was evaluated. The filter and the atomic features interact which necessitates a
double atomic indexing ofA andB. The degree indices `out, `in, `f correspond to order indices i, j, k
respectively. u, v both represent multiplicity. Using the input features F , Clebsch-Gordan coefficients
C, filter spherical harmonics Y ( rB−rA

‖rB−rA‖ ), learned scalar radial coefficients R(φ(‖rB − rA‖)), and

normalization coefficients n, the convolutional output F̃ is defined, with the layer h index omitted,

F̃ `out

uiA =
∑

B `f `in vj k

C
`out`in`f
ijk Y

`f
kAB R

`out`in`f
uv AB n`out`in

AB F `invj B . (3)

The customization between the invariant, scalar-only, distance-based L0Net and the equivariant,
scalar-and-vector, distance-and-angle-based L1Net is determined by the degrees `in, `out. L0Nets
only use `in, `out = 0 while L1Nets allow for `in, `out ∈ {0, 1}. The normalization is defined such
that input features, with component-wise unity second moments, and component-wise normally
distributed radial components produce features with component-wise unity second moments.

Gated Block This layer is used to provide a nonlinearity to the output of the convolution. Scalars
are handled normally, i.e. L(F `=0) = Softplus(F̃ `=0), while vector, ` = 1, features are multiplied
by a scalar passed through an activation function. Specifically, L(F `=1

u ) = Sigmoid(F̃ `=0
u+O)F̃ `=1

u .
This introduces nonlinearity while maintaining equivariance. The previous layer produces extra
learned scalar features, of multiplicity u1 with index offset O, in order to utilize this nonlinearity.

Final Atom-wise and Shift, Scale, Aggregate The last Convolution & Gated Block is restricted to
output scalar, non-rotating features, facilitating an atom-wise layer on those features while retaining
overall rotation invariance. The final atomic features are summed to produce a single scalar output,
P =

∑N
a=0 F

hmax
a . In order to keep P near mean zero and variance one, it is shifted and scaled

using statistics calculated from the training set and atomic references from the QM9 data set to finally
output the target prediction, ˆtarget. We employ the MSE loss between ˆtarget and target.

2.1 Experiment

Using QM9 and following the training procedure from SchNetPack, we selected random training,
validation and test sets with 109,000, 1,000 and 23,885 molecules, respectively. Each network
architecture was trained on each of the 12 QM9 properties. This procedure was repeated three times
with an L1Net, an L0Net, and an L0Net Deep, where L0Net Deep has an additional Convolution &
Gated Block. The specifics of the three network architectures were determined by hyperparameter
search, as described in the supplementary material. The L0Net is the same as the L1Net, except that
the F `=1

u=1,...,29 features are dropped and the multiplicity of F `=0 features is increased by 3× 29 = 87.

The adam optimizer [24] was employed with standard parameters and an initial learning rate of
6.53× 10−3. The learning rate was exponentially decayed by factor 0.5 on a loss plateau of 5 epochs
to a minimum of 10−7. Maximum training epochs was set at 200 with early stopping patience of 50.

We quantify the performance across L0Net, L1Net, and L0Net Deep in Table 1. If we average the
%EL1,L0 column across targets, we find that introducing rotating features improved performance by
23% on the mean absolute error. In other words, the ablation of rotating features, by changing L1Net
to L0Net without altering the architecture otherwise, significantly reduced the parameter efficiency
by decreasing the accuracy and keeping the number of parameters constant.
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Figure 1: Illustration of L1Net with the architecture on the left, the convolution & gated block in the
center, and the convolution on the right. The scalar activation function σ0(·) = Softplus(·), while the
gated activation function σ1(·) = Sigmoid(x). The notation “T x L = D” implies that this connection
contains a multiplicity T of features with degree D. The target output Û0 is shown as an example.

Target SchNet SchNet
Pack

Cormorant L1Net L0Net L0Net
Deep %EL1,L0 %EDeep,L0 ∆EL1,Deep %EL1,Deep

µ (D) 0.033 0.021 0.038 0.043 0.086 0.091 -0.501 0.055 -0.048 -0.556
α (a30) 0.235 0.124 0.085 0.088 0.115 0.115 -0.235 0.000 -0.027 -0.235
εHOMO (meV) 41.000 47.000 34.000 46.015 47.069 45.294 -0.022 -0.038 0.721 0.015
εLUMO (meV) 34.000 39.000 38.000 34.646 39.947 37.217 -0.133 -0.068 -2.571 -0.064
εgap (meV) 63.000 74.000 61.000 67.543 70.344 67.873 -0.040 -0.035 -0.330 -0.005
〈R2〉 (a20) 0.073 0.158 0.961 0.354 0.579 0.382 -0.389 -0.340 -0.028 -0.048
zpve (meV) 1.700 1.616 2.027 1.561 1.804 1.800 -0.135 -0.002 -0.239 -0.132
U0 (meV) 14.000 12.000 22.000 13.464 19.943 18.487 -0.325 -0.073 -5.023 -0.252
U (meV) 19.000 12.000 21.000 13.834 19.889 19.533 -0.304 -0.018 -5.699 -0.287
H (meV) 14.000 12.000 21.000 14.358 21.001 20.744 -0.316 -0.012 -6.386 -0.304
G (meV) 14.000 13.000 20.000 13.989 20.057 18.744 -0.303 -0.065 -4.755 -0.237
Cv ( cal

molK ) 0.033 0.034 0.026 0.031 0.035 0.037 -0.114 0.057 -0.006 -0.171

Table 1: This table quantifies the mean absolute error of relevant models on the QM9 regression
targets over unseen test data. The L1 and L0Nets are compared to their closest relatives, SchNet and
Cormorant as well as an L0Net with an extra Convolution & Gated Block layer called L0Net Deep.
∆EX,Y impliesX−Y whereX,Y are mean absolute errors of models. %EX,Y is the same calculation
divided by the L0Net mean absolute error on the same target. The size of train/validation/test sets
differed across SchNet, SchNetPack, and Cormorant. The L·Nets were trained like the published
version of SchNetPack [13] in this regard. Bold face indicates best performance within the sub-table.

p1

p2

p1

p2

p
p

Figure 2: The magnitude of
the total dipole moment de-
pends on the orientation of
the constituents, which L0Net
convolutions do not consider.

We compare these results to an alternative modification of the archi-
tecture, namely, introducing another, rotationally invariant, Convo-
lution & Gated Block to our L0Net. Averaging %EDeep,L0 across
targets reveals that L0Net Deep reduces the error by an average of
4%–significantly less effective while introducing another layer of pa-
rameters. Notably, L1Net improved on every target when compared
to L0Net, while L0Net Deep worsened predictions on Cv and µ.

In simple cases, predicting the magnitude of a rotating vector quan-
tity, like µ, requires functional dependence on the angles between
constituents in order to make unbiased predictions. Consider the
case of an estimator F which predicts the magnitude squared total
dipole moment of two constituent dipoles p2 = ‖p1 + p2‖2 =
p21 + 2p1p2 cos θ12 + p22. F is restricted from functional dependence on θ12, thus E[F ] = F . If we
assume the best-case scenario, E[cos θ12] = 0, and the likely scenario, E[cos2 θ12] > 0, then the
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expected squared error is

min
F

E[(F − p2)2] = min
F
F2 − 2F(p21 + p22) + (p21 + p22)2 + 4p21p

2
2E[cos2 θ12]

= 4p21p
2
2E[cos2 θ12] > 0;

(4)

implying F is a biased estimator. By introducing rotating features through rotationally equivariant
convolutions, the network is effectively introducing functional dependence angles between vector
quantities, just like in this example. Given that SchNetPack does so well on the dipole moment, it
remains an open question whether distances alone, in an average molecule in QM9, are enough to
orient atom-wise contributions to the dipole moment. This investigation is left for future work.

L1Net is competitive in comparison with the presented architectures despite having fewer parameters
and layers than the others. Still, it isn’t clear if there is a class of targets which are fundamentally
better suited to architectures with rotating features. The ablation study had the most impact on
dipole moment µ, electronic spatial extent 〈R2〉, and energy at 0K U0; however, SchNetPack,
without rotating features, had the lowest error on those targets and currently holds the state-of-the-art
prediction on dipole moment. The SchNet family of models includes 6 convolutions and 20 atom-wise
layers (32 including filter generating networks), more than the L·Nets. Since our results imply that
adding convolutions was not very efficient, it may be that more atom-wise layers are critical to gain
expressivity with non-rotating features. We performed a small experiment in this direction within our
framework using a network called L0Net Outdeep. See the supplementary material.

Cormorant and L1Net outperformed all architectures without rotating features on isotropic polariz-
ability α and heat capacity Cv . L1Net includes the gated activation function, while Cormorant does
not. Given that L1Net outperformed Cormorant on seven targets, while using fewer parameters, this
is evidence that gated nonlinearities are worthwhile. Cormorant used an architecture which could be
cast as an L3Net in our framework, by including spherical harmonic features up to degree 3. They
applied 4 convolutional layers, “CGLayers,” and do not have a clear equivalent to the atom-wise layer.
Cormorant includes a so-called “two-body interaction” which no other network applies.

3 Conclusion

We performed an ablation study of the L1Net in order to determine the value of rotationally equivariant
internal layers in regression on molecular properties using the data set QM9. Since other networks
like SchNet and Comorant can be cast within our e3nn framework, this experiment provides intuition
about architecture design for a wide variety of paradigms. Internal rotationally equivariant layers
quantitatively improved performance by 23% on average while introducing new layers only helped
by a mean of 4%. We provided physical intuition about what is gained by using rotating features
using a simple example of a dipole built from two constituents. This example was chosen because the
dipole moment was most impacted by the introduction of rotating features compared with increasing
depth. However, it remains challenging to identify specific targets which would benefit the most from
rotational features, in general. Our recommendation is to use rotationally equivariant internal layers
when performing regression on (magnitudes of) geometric tensors where the angular contribution to
constituent addition plays an important role. Our results imply that these contributions play a role in
other properties as well, but of lower order.
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4 Supplementary Material

4.1 Normalization Coefficient

A feature of e3nn is the convolution defined in Equation 3. One heretofore undefined coefficient in
the convolution is n. Recall that the normalization coefficient is selected such that component-wise
second moment unity input features and component-wise normally distributed radial components
produce output features which are component-wise unity in their second moments.

To better discuss the normalization properties, it makes sense to divide Equation 3 into a so-called
“Kernel,”

Kloutlin
ui vj =

∑
lf k

C
loutlinlf
ijk Y

lf
k R

loutlinlf
uv nloutlin , (5)

and a “Kernel-Feature Convolution,”

F̃ lout

ui A =
∑

B lin vj

Kloutlin
ui vj AB F linvj B . (6)

As you can see, calculating the Kernel followed by the Kernel-Feature Convolution yields F̃ which
are the intermediate features before the application of the Gated Block, i.e. Convolution(·) =
Kernel-Feature Convolution ◦ Kernel(·).

Now that the Kernel is defined, we can discuss the normalization in simpler language. Using the 〈H〉
notation for the mean of H , we write four useful, true statements:

(by independence) var

∑
lin vj

Kloutlin
ui vj F linvj

 =
∑
lin vj

var
[
Kloutlin
ui vj F linvj

]
, (7)

(by independence) var
[
Kloutlin
ui vj F linvj

]
= 〈(KF )2〉 − 〈KF 〉2 = 〈K2〉〈F 2〉 − 〈K〉2〈F 〉2, (8)

(since 〈R〉 = 0) 〈Kloutlin
ui vj 〉 =

∑
lf k

〈Cloutlinlf
ijk Y

lf
k R

loutlinlf
uv nloutlin〉 = 0, (9)

〈(Kloutlin
ui vj )2〉 =

∑
lf k

∑
l′f k

′

〈Cloutlinlf
ijk C

loutlinl
′
f

ijk′ Y
lf
k Y

l′f
k′ R

loutlinlf
uv R

loutlinl
′
f

uv (nloutlin)2〉

(since 〈RR〉 = δ) =
∑
lf

∑
kk′

C
loutlinlf
ijk C

loutlinlf
ijk′ Y

lf
k Y

lf
k′ (nloutlin)2

= (nloutlin)2
∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

.

(10)

Now we can combine Equations 9 and 10 with Equation 8 to write,

var
[
Kloutlin
ui vj F linvj

]
= (nloutlin)2〈(F linvj )2〉

∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

. (11)

This implies that Equation 7 can be written
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(7) =
∑
lin

(nloutlin)2
∑
vj

τ2lin

∑
lf

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

=
∑
lin

(∑
v

1

)
(nloutlin)2τ2lin

∑
lf

∑
j

(∑
k

C
loutlinlf
ijk Y

lf
k

)2

=
∑
lin

(∑
v

1

)
(nloutlin)2τ2lin

∑
lf

(4π(2lout + 1))−1

= (4π(2lout + 1))−1
∑
lin

(∑
v

1

)
(nloutlin)2 τ2lin

∑
lf

1

 ,

(12)

where 〈(F linvj )2〉 := τ2lin . Note that we want (7) = τ2lin , and we assume that τ2lin = 1. This enforces
that the second moment is unity. Therefore,

4π(2lout + 1) =
∑
lin

(∑
v

1

)
(nloutlin)2

∑
lf

1


(nloutlin)2 =

4π(2lout + 1)

(
∑
v 1)

(∑
lf

1
) (∑

lin
1
) . (13)

4.2 Shift & Scale Function

Neural networks operate best when their outputs are normally distributed. For this reason, we perform
a decomposition of the target value such that the regression network’s output fits this criteria. The
implementation of this part of the network was handled by the SchNetPack package [13]. First, the
decomposition utilizes the reference values in the QM9 data set so the network starts with a good
guess and predicts a perturbation from that guess. The network’s prediction is decomposed into a
reference bias, an atom-wise sum from the Table 2, and a scaled contribution from each atom.

Element ZPVE U (0 K) U (298.15 K) H (298.15 K) G (298.15 K) Heat Capacity
Hartree Hartree Hartree Hartree Hartree Cal/(Mol Kelvin)

H 0.000 -0.500 -0.499 -0.498 -0.511 2.981
C 0.000 -37.847 -37.845 -37.844 -37.861 2.981
N 0.000 -54.584 -54.582 -54.582 -54.599 2.981
O 0.000 -75.065 -75.063 -75.062 -75.080 2.981
F 0.000 -99.719 -99.717 -99.716 -99.734 2.981

Table 2: Table is adapted from the “atom ref” table in the QM9 paper [10].

For any target in Table 2 and atom in QM9, we can create a map from element Z and prediction
column C to the corresponding reference value ref(Z,C). For example, ref(H,U0) = −0.5
Hartree. Given a training set of M molecules indexed by m ∈ {1, 2, ...,M} each with Am atoms
indexed by am ∈ {1, 2, ..., Am} with a corresponding element Zam , we write the reference bias

pm =

Am∑
am=1

ref(Zam , C). (14)

To further our decomposition consider the target regression value for a certain molecule tm. From
the ground truth, we can write the atom-wise deviation from the reference value,

t̃m =
tm − pm
Am

. (15)
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By gathering statistics from the training data on this t̃m, we will achieve our goal of normalizing
the output of the regression network. Let ¯̃t and σt̃ be the mean and standard deviation of t̃m over
molecules respectively. Given the atom-wise output of a regression network Ram , we predict the
ground truth target t̂m by

t̂m = pm +

Am∑
am=1

(
¯̃t+ σt̃Ram

)

= pm +Am
¯̃t+ σt̃

Am∑
am

Ram

= pm +
Am
M

M∑
n=1

t̃n + σt̃

Am∑
am

Ram .

(16)

We presented several equivalent formulations in order to provide clarity.

4.3 Hyperparameter Search Technique

The technique applied in the paper was to do an ablation study of the rotating features in an L1Net
but first we had to determine which hyperparameters defined the L1Net. In order to find a network
architecture which was well suited for every QM9 target, the hyperparameter search utilized multi-
target training using a featurization-output design. By searching in the multi-target regime, as opposed
to doing 12 individual searches utilizing the same architecture, we traded the accuracy of single-target
training for a factor of 12 decrease in hyperparameter search time. This allowed for significantly
more architectures to be tested.

Embedding

(Z1, …, ZN)

Shift, 
scale, 
and 
agg.

U0

__x L=0

__x L=0 __x L=1

^

(r1, …, rN)

Featurization:
Multi-layer

Convolutions 
& Gated Blocks

Output 
Block

Output 
Block

Output 
Block

Shift, 
scale, 
and 
agg.

Shift, 
scale, 
and 
agg.

μCv
^^

Multi-layer Convolutions 
& Gated Blocks

Multi-layer Perceptron

__x L=0 __x L=1

__x L=0 __x L=1

__x L=0 Output Block

...

^

∑ MSEtarget

Divide by 
std ( target )

Target

Divide by 
std ( target )

Target

Targets

Multi-target Loss

Figure 3: Illustration of the hyperparameter search with the set of possible architectures on the left,
the set of possible output blocks on the top right, and the multi-target, normalized loss function shown
in the bottom right.

The featurization section in L1Net (see Figure 1) is represented by the atom-wise embedding and
two convolution & gated block layers. In L1Net the so-called output block represents the remaining
convolution & gated block layer. Each final atom-wise layer and shift, scale, and aggregate is unique
to the target being predicted. Given that examples, we focus next on how we achieved the multi-target
training aspect using multiple output blocks.

Each output block receives a copy of the same learned featurization; however, the output blocks
do not share gradients or other information. This allows for each output block to transform the
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learned input features in parallel, each predicting a single target; thereby, the whole network makes
predictions on multiple targets. The network design is depicted in Figure 3.

The featurization section is an embedding followed by layers of Convolutions and Gated Blocks.
A combination of order zero and order one spherical harmonic features are copied and passed to
each output block. Each output block then passes those features through Convolutions and Gated
Blocks and calculates an array of scalar features. Since they are scalar features, we can pass them
through one or more atom-wise layers with a rectified linear unit activation without breaking total
network rotation invariance. The last layer of that multi-layer perceptron predicts a single scalar
using an atom-wise layer with the identity activation function, which is then passed to the shift and
scale operation as seen in Section 4.2.

The loss calculation is different from other learning problems because we attempt to normalize the
losses across targets. Since all targets are equally important, we normalize their variance to one based
off of statistics from our training data. This formulation depends on the assumption that each output
block predicts mean zero at initialization. Recall Equation 16.

Therefore, using the notation from Section 4.2, we write the loss using the the total molecule-wise
offset sm = pm +Am

¯̃t. The molecule-wise loss for target tm looks like,

Lm(tm, t̂m) = (
tm − sm

σt̃
− t̂m − sm

σt̃
)2 =

1

σ2
t̃

(tm − t̂m − 2sm)2. (17)

For a batch of molecules M and pairs of targets with corresponding predictions {(tm, t̂m) : m ∈M},
the total loss is calculated by

1

M

∑
(tm, t̂m)

∑
m

Lm(tm, t̂m). (18)

Although it is possible to train a model against all targets at the same time using this methodology, it
is often much more difficult to achieve simultaneously good performance across targets. Therefore
this model was only used for hyperparameter search, not for reported performance results.

Hyperparameter Minimum Maximum
Batch Size 8 25

Learning Rate 10−6 3× 10−1

Size of Embedding 80 144
Featurization Components (FC) 80 144

Featurization Representation (FC) randomly divided between Y 0
m and Y 1

m
Featurization Conv & GBs 2 5

Residual Network True True
Radial Basis φC , φG, φB φC , φG, φB

Number of Radial Bases 25 100
Radial Maximum 1.2 Å 30.0 Å

Radial MLP Layers 1 3
Radial MLP Neurons 80 144

Output Components (OC) 64 128
Output Representation (OC) randomly divided between Y 0

m and Y 1
m

Output Conv & GBs 1 2
Output MLP Layers 1 3

Output MLP Neurons 80 144
Table 3: The ranges of hyperparameters for the random hyperparameter search are written in this
table. Cosine φC , Gaussian φG, and Bessel φB are defined in Equation 2, SchNet [4], or DimeNet
[22] respectively.

The hyperparameter search involved sampling forty different sets of hyperparameters from the ranges
in Table 3 and doing multi-target training for ten epochs with each set of hyperparameters. The test
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set performance for each of the forty models was compared. We took L1Net to be the winner since it
produced the minimum loss averaged over normalized losses on all targets.

4.4 L1Net, L0Net, etc. Learning Plots

We compared the performance of L1Net to several different L0Net-style architectures. The most
important question in this paper was: “Can an L0Net make-up for the L1Net performance by
increasing depth?” However, given our architecture design, “increasing depth” could mean one
of several things. L0Net Deep increased added another Convolution & Gated Block layer, L0Net
Outdeep added another atom-wise layer after the convolutions, and L0Net Both Deep did both of
those things. Their performance on validation data is plotted in Figure 4. We found that the L0Net
Deep performed the best when compared with the other L0Net-style architectures.
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Figure 4: Plotted above is the logarithm of the mean absolute error on the validation set versus the
logarithm of training epochs for every regression target. The plots contain the training curves for the
L1Net, L0Net, L0Net Deep, L0Net Outdeep, and L0Net Both Deep architectures. Just like in the
main article, the adam optimizer was employed with standard parameters and an initial learning rate
of 6.53× 10−3. The learning rate was decayed given a loss plateau of five epochs to a minimum of
10−7. The maximum number of training epochs was set at 200 with early stopping patience of 50.
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