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Abstract

The discovery of small molecules with desirable properties is an essential issue in
chemistry which could speed up much research progress in various domains such
as virtual screening and drug design. Indeed, there is a series of open challenges,
including building proper representations of molecules for machine learning algo-
rithms. To address this issue, in this study we propose a deep neural network-based
architecture that learns molecular representation to enhance the process of molecu-
lar properties prediction. We use two separate blocks of operations, where each
block learns a representation. Then the two latent feature vectors are combined
and fed into a few dense layers ended by a regression or classification layer. The
performance of the proposed methodology was tested on the MoleculeNet, a stan-
dard benchmark for molecular machine learning. The results show that our method
outperforms state-of-the-art models.

1 Introduction

Predicting molecular properties has attracted much attention in computer science, physics, or chem-
istry since it affects the speed of progress in discovering substances with desired characteristics for
computer-aided drug discovery and materials development [1, 2]. Hence, computational methods,
especially machine learning methods are more and more extensively used in many fields, including
the exploration of vast numbers of synthetically accessible compounds [3].

Previous works have shown that the accurate modeling and prediction of molecule properties is
strictly connected with the choice of molecular representation [4, 5]. Over the last few years, deep
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learning methods have made significant progress on numerous machine learning tasks. They have
also revolutionized the way problems in cheminformatics are being solved [6]. Generally, the current
works along the line of deep learning for molecules can be grouped into two categories: string- and
graph-based methodologies. However, recent works indicate that graph representation and graph
neural networks are a promising approach to tackle many challenges.

In this work, we introduce an architecture to predict molecular properties that comprises two separate
blocks. Either block aims to learn an expressive representation from a given compound. The first
block models a molecule as an undirected graph. The core part is a stack of attention layers followed
by a fully connected layer applied to form features from molecular graphs. The second block converts
a molecule into molecular fingerprints. Then a deep learning algorithm is adopted on the sequence to
learn a representation. The two final feature vectors are concatenated and fed into fully connected
layers. The final layer is a regression or classification layer to estimate the output as the property
value.

A major advantage of our approach, as opposed to the previous methods lies in that our well-designed
architecture applies a stacked attention mechanism and incorporates both the atom and molecule
level attributes. Extensive experiments are provided on six datasets included in the publicly available
benchmark dataset MoleculeNet [7]. Our approach significantly outperforms the state-of-the-art
methods on both classification and regression tasks.

2 Model Architecture

Figure 1 shows the whole framework of our approach. The section which is located below the dotted
line indicates the core part of the architecture. As can be seen from the figure, we employ two separate
blocks to learn representations from molecules and combine these representations to feed into a series
of fully-connected layers. At the ended we have a regression or a classification layer to estimate the
output as the molecular property value or a prediction label (depending on the type of the task).

Figure 1: Depiction of the entire workflow of our approach.

Block I The first block begins by representing each chemical compound as an undirected graph
containing nodes (atoms) with features featuresi and edges (bonds) with features featuresij .
Formally, a molecule is denoted by G = (V, E), where V is a set of atoms containing |V| = N nodes.
The graph is regarded as an undirected graph under the assumption that every atom has an interaction
with others, including itself.

Then the model uses two separate GAT layers followed by a fully connected layer and a dropout
layer. The GAT layers are marked with a dashed lines frame in Figure 1. The block returns a vector
of features as output, xblockI .

2



(a) ESOL (b) Lipophilicity

(c) FreeSolv

Figure 2: The RMSE scores of various methods on regression task and test set. We achieved the least
RMSE (lower is better).

(a) BACE (b) BBBP

(c) ClinTox

Figure 3: The AUC-ROC scores of various methods on classification task and test set. We achieved
higher AUC-ROC score.

Block II Initially, the second block operates on a vector representation of features. Our goal is to
obtain a neural fingerprint representation in order to ensure the generalization of molecular features
[8]. Thus, we employ a collection of descriptors extracted by RDKit [9]. Then, the vector of features
is fed into three fully connected layers and the block returns the representation, xblockII .

The final molecular representation of a molecule xmol is computed by concatenating the representa-
tions calculated at the blocks as follows: xmol = [xblockI · xblockII ].

3 Results and discussion

We evaluated the performance of our method on the ESOL, FreeSolv, Lipophilicity, ClinTox, BBBP,
and BACE datasets from MoleculeNet [7]. Furthermore, each of the datasets was randomly split into
training, validation and test sets at a ratio of 8:1:1. We performed 10 independent trials of training,
validation and test, and averaged the outcomes. Furthermore, when we work on a regression task, we
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(a) Lipophilicity (lower = better) (b) BBBP (higher = better)

Figure 4: Performance of our approach and Random forest. Random forest baseline model is trained
on the concatenation of MorganFPs and RDKit physchem descriptors as well.

Figure 5: Exemplary molecules and corresponding most overpredicted, underpredicted and well-
predicted values.

use root mean squared error (RMSE) as the performance metric. In turn, classification models are
evaluated by the area under the receiver operating characteristic curve (AUC-ROC).

Figure 2 depicts the RMSE scores on the test sets. A glance at results reveals the proposed method-
ology as the model with the best performance for all datasets. Consequently, it achieves 0.49 over
0.61 (Weave), 0.71 over 1.22 (Weave), 0.56 over 0.65 (GConv) for ESOL, FreeSolv and Lipophilicity.
Interestingly, our technique obtains the best AUC-ROC scores for the BBBP and ClinTox in the test
dataset. For the BACE test dataset, the proposed method outperforms all benchmark models (0.858)
except of KernelSVM (0.862). These results fully prove the validity of our approach. For comparison,
we also evaluated the prediction performance where Random forest (RF) baseline model is trained
on a feature vector generated by concatenating MorganFPs and RDKit descriptors. As illustrated in
Figure 4, our architecture beats RF in all cases.

A small subset of molecules with the most underpredicted, overpredicted and well-predicted values is
shown in Figure 5. One may notice that the maximum difference between the experimental value and
the predicted one for a given molecule is not large. Moreover, most of the structures are different. It
proves that our method can capture the molecular information and does not depend on the type of
molecular structure.

4 Conclusions

We have presented a summary of the main results from a novel approach to predict the biological and
physicochemical properties of small molecules. In the evaluation of our method with the MoleculeNet
benchmark datasets, accurate prediction performance for various chemical properties were achieved.
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