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Abstract

Graph neural networks (GNNs) in general, and graph convolutional networks
(GCN) in particular, often rely on low-pass graph filters to incorporate geomet-
ric information in the form of local smoothness over neighboring nodes. While
this approach performs well on a surprising number of standard benchmarks, the
efficacy of such models does not translate consistently to more complex domains,
such as graph data in the biochemistry domain. We argue that these more com-
plex domains require priors that encourage learning of band-pass and high-pass
features rather than oversmoothed signals of standard GCN architectures. Here,
we propose an alternative GNN architecture, based on a relaxation of recently
proposed geometric scattering transforms, which consists of a cascade of graph
wavelet filters. Our learned geometric scattering (LEGS) architecture adaptively
tunes these wavelets and their scales to encourage band-pass features to emerge in
learned representations. Our results show LEGS matches or outperforms popular
GNNs and fixed graph scattering, while retaining certain mathematical properties
of its handcrafted design.

1 Introduction

At the core of geometric deep learning is the use of graph neural networks (GNNs) in general, and
graph convolutional networks (GCNs) in particular, which ensure neuron activations follow the ge-
ometric organization of input data by propagating information across graph neighborhoods [1–3].
However, recent work has shown the difficulty in generalizing these methods to more complex struc-
tures, identifying common problems and phrasing them in terms of oversmoothing [4], oversquash-
ing [5] or under-reaching [6]. These issues prevent deeper cascades and hence, the representation of
long-range dependencies within the graph.

Recently, an alternative approach was presented to provide deep geometric representation learning
by generalizing Mallat’s scattering transform [7], originally proposed to provide a mathematical
framework for understanding convolutional neural networks, to graphs [8–10] and manifolds [11].
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Similar to traditional scattering, which can be seen as a convolutional network with nonlearned
wavelet filters, geometric scattering is defined as a GNN with handcrafted graph filters, typically
constructed as diffusion wavelets over the input graph [12], which are then cascaded with pointwise
absolute-value nonlinearities. This wavelet cascade results in permutation equivariant node features.
Moreover, their handcrafted design enables rigorous study of their properties, such as stability to
deformations and perturbations, and provides a clear understanding of the information extracted by
them, which by design (e.g., the cascaded band-pass filters) goes beyond low frequencies to consider
richer notions of regularity [13, 14].

However, while graph scattering transforms provide effective universal feature extractors, their rigid
handcrafted design does not allow for the automatic task-driven representation learning that naturally
arises in traditional GNNs. We propose a native neural network architecture for learned geometric
scattering (LEGS), that directly modifies the scattering architecture from Gao et al. [8], Perlmutter
et al. [14], via relaxations described in Sec. 2, to allow a task-driven adaptation of its wavelet con-
figuration via backpropagation implemented in Sec. 3. We demonstrate the empirical benefits of our
construction over standard GNNs and pure geometric scattering, on graph classification and regres-
sion in Sec. 4. In particular, we find that in tasks where the graphs have a large diameter relative to
their size, learnable scattering features improve performance over competing methods.

2 Geometric Scattering

Fixed geometric scattering in [8] relies on a cascade of graph filter. Let tj = 2j−1 and define
W as the weighted adjacency matrix,D as the degree matrix, and P := 1

2 (In +WD−1), then the
geometric scattering filter bank is constructed asWJ := {Ψj ,ΦJ}J−1j=0 , with

ΦJ := P tJ ; Ψj := P tj − P tj+1 , 0 ≤ j ≤ J − 1. (1)

Given the wavelet filter bankWJ , node-level scattering features are computed by stacking cascades
of bandpass filters and element-wise absolute value nonlinearities to form

Upx := Ψjm |Ψjm−1
. . . |Ψj2 |Ψj1x|| . . . |, (2)

indexed (or parametrized) by the scattering path p := (j1, . . . , jm) ∈ ∪m∈NNm0 that determines the
filter scales captured by each scattering coefficient. Then, a whole-graph scattering representation
is obtained by aggregating together node-level features via statistical moments over the nodes of the
graph [8]. This construction yields the geometric scattering features

Sp,qx :=

n∑
i=1

|Upx[vi]|q. (3)

indexed by the scattering path p and moment order q. Finally, we note that it can be shown that the
graph-level scattering transform Sp,q guarantees node-permutation invariance, while Up is permu-
tation equivariant [14, 8].

Relaxed geometric scattering We propose (1) replacing P with Pα := αIn + (1 − α)WD−1

where α ∈ [1/2, 1] controls the reluctance of the random walk to transition from one node to an-
other. By enabling training of the laziness parameter, the learned transform will be able to control
the locality and rate of information propagation in the filters constructed from this random walk,
and (2) replacing the handcrafted dyadic scales in Eq. 1 with an adaptive monotonic sequence of
integer diffusion time scales 0 < t1 < · · · < tJ , which can be tuned via training we define this
adaptive filter bank as W ′J . The following theorem shows that for any selection of scales, the re-
laxed construction ofW ′J constructs a nonexpansive frame, similar to the result from [14] shown for
the original handcrafted construction.
Theorem 1. There exist a constant C > 0 that only depends on t1 and tJ such that for all x ∈
L2(G,D−1/2),

C‖x‖2D−1/2 6 ‖Φ′Jx‖2D−1/2 +

J∑
j=0

‖Ψ′jx‖2D−1/2 6 ‖x‖2D−1/2 ,

where the norm considered here is the one induced by the space L2(G,D−1/2).
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Intuitively, the upper (i.e., nonexpansive) frame bound implies stability in the sense that small pertur-
bations in the input graph signal will only result in small perturbations in the representation extracted
by the constructed filter bank. Further, the lower frame bound ensures certain energy preservation
by the constructed filter bank, thus indicating the nonexpansiveness is not implemented in a trivial
fashion (e.g., by constant features independent of input signal).

The next theorem establishes that for any such configuration, extracted from W ′J via Eqs. 2-3, is
permutation equivariant at the node-level and permutation invariant at the graph level. This guaran-
tees that the extracted (in this case learned) features indeed encode intrinsic graph geometry rather
than a priori indexation.

Theorem 2. Let U ′p and S′p,q be defined as in Eq. 2 and 3 (correspondingly), with the filters from
W ′J with an arbitrary configuration 0 < α < 1, 0 < t1 < · · · < tJ . Then, for any permutation Π

over the nodes of G, and any graph signal x ∈ L2(G,D−1/2)

U ′pΠx = ΠU ′px and S′p,qΠx = S′p,qx p ∈ ∪m∈NNm0 , q ∈ N

where geometric scattering implicitly considers here the node ordering supporting its input signal.

We note that the results in Theorems 1-2, as well as their proofs, closely follow the theoretical
framework proposed by [14]. We carefully account here for the relaxed learned configuration, which
replaces the originally handcrafted configuration there. The adjusted proofs appear in Appendix A.

Figure 1: LEGSNet architecture

3 Learnable Geometric Scattering Network Architecture

In order to implement the relaxed geometric scattering construction (Sec. 2) via a trainable neural
network, throughout this section, we consider an input graph signal x ∈ Rn. The propagation of this
signals can be divided into three major modules. First, a diffusion module implements the Markov
process that forms the basis of the filter bank and transform, while allowing learning of the laziness
parameter α. Then, a scattering module implements the filters and the corresponding cascade, while
allowing the learning of the scales t1, . . . , tJ . Finally, the aggregation module collects the extracted
features to provide a graph and produces the task-dependent output.

Learning diffusion filter bank. Next, we consider the selection of J ≤ m diffusion scales for the
relaxed filter bank construction with the wavelets defined according to Eq. 4. We experimented
with methods of increasing flexibility: (1) Selection of {tj}J−1j=1 as dyadic scales, fixed for all
datasets (LEGS-FIXED), (2) Selection of each tj using softmax and sorting by j, learnable per
model (LEGS-FCN and LEGS-RBF, depending on output layer explained below). For the softmax
selection, we use a selection matrix F ∈ RJ×m, where each row F(j,·) is dedicated to identi-
fying the diffusion scale of the wavelet P tj

α via a one-hot encoding. This is achieved by setting
F := [0, softmax(θ1), softmax(θ2), . . . , softmax(θJ),0]T where θj ∈ Rm are trainable. While
this construction may not strictly guarantee an exact one-hot encoding, we assume that the softmax
activations yield a sufficient approximation. Further, w.l.o.g., we assume that the rows of F are
ordered according to the position of the leading “one” activated in every row. In practice, this is
enforced by reordering the rows. We now construct the filter bank W̃F := {Ψ̃j}Jj=0 with the filters

Ψ̃jx =
∑m

t=1

[
F(j,t)P

t
αx− Fj+1,tP

t
αx
]

1 ≤ j ≤ J (4)

matching and implementing the construction ofW ′J from Eq. 1.
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Aggregating and classifying scattering features. While multiple approaches may be applied to
aggregate node-level features into graph-level features, here we follow the statistical-moment ag-
gregation as in Gao et al. [8]. on graph classification, this aggregation works particularly well in
conjunction with a radial basis function (RBF) kernel. Here, we consider two configurations for
the task-dependent output layer of the network, either using a small neural network with two fully
connected layers, which we denote LEGS-FCN, or using a RBF network [15], which we denote
LEGS-RBF, to produce the final classification.

4 Empirical Results

Here we show results of LEGSNet on whole graph classification and graph regression tasks, that
arise in a variety of contexts, with emphasis on the more complex biochemic datasets. We use
biochemical graph datasets as they represent a new challenge in the field of graph learning. Unlike
other types of data, these datasets do not exhibit the small-world structure of social datasets and may
have large graph diameters for their size. Further, the connectivity patterns of biomolecules are very
irregular due to 3D folding and long range connections, and thus ordinary local node aggregation
methods may miss such connectivity differences.

Whole Graph Classification We perform whole graph classification by using eccentricity and
clustering coefficient as node features as is done in [8]. We compare against graph convolutional
networks (GCN) [1], GraphSAGE [16], fixed geometric scattering with a support vector machine
classifier (GS-SVM) as in [8], and a baseline which is a 2-layer neural network on the features av-
eraged across nodes (disregarding graph structure). We evaluate these methods across 7 benchmark
biochemical datasets where the goal is to classify between two or more classes of compounds. For
completeness we also show results on six social network datasets in Table S2. For more specific
information on individual datasets see Appendix B. We use 10-fold cross validation on all models
which is elaborated on in Appendix C.

Table 1: Mean ± standard deviation test set accuracy on biochemical datasets.
Diam. Nodes LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GS-SVM Baseline

DD 19.81 284.32 72.58 ± 3.35 72.07 ± 2.37 69.09 ± 4.82 67.82 ± 3.81 66.37 ± 4.45 72.66 ± 4.94 75.98 ± 2.81
ENZYMES 10.92 32.63 36.33 ± 4.50 38.50 ± 8.18 32.33 ± 5.04 31.33 ± 6.89 15.83 ± 9.10 27.33 ± 5.10 20.50 ± 5.99
MUTAG 8.22 17.93 33.51 ± 4.34 82.98 ± 9.85 81.84 ± 11.24 79.30 ± 9.66 81.43 ± 11.64 85.09 ± 7.44 79.80 ± 9.92
NCI1 13.33 29.87 74.26 ± 1.53 70.83 ± 2.65 71.24 ± 1.63 60.80 ± 4.26 57.54 ± 3.33 69.68 ± 2.38 56.69 ± 3.07
NCI109 13.14 29.68 72.47 ± 2.11 70.17 ± 1.46 69.25 ± 1.75 61.30 ± 2.99 55.15 ± 2.58 68.55 ± 2.06 57.38 ± 2.20
PROTEINS 11.62 39.06 70.89 ± 3.91 71.06 ± 3.17 67.30 ± 2.94 74.03 ± 3.20 71.87 ± 3.50 70.98 ± 2.67 73.22 ± 3.76
PTC 7.52 14.29 57.26 ± 5.54 56.92 ± 9.36 54.31 ± 6.92 56.34 ± 10.29 55.22 ± 9.13 56.96 ± 7.09 56.71 ± 5.54

We find that LEGSNet outperforms other methods by a significant margin on biochemical datasets
with relatively small but high diameter graphs (NCI1, NCI109, ENZYMES, PTC), as shown in
Table 1, whereas on the social network datasets GCN and GraphSage perform quite well (see Ta-
ble S2). On extremely small graphs we find that GS-SVM performs best, which is expected as other
methods with more parameters can easily overfit the data. We reason that the performance increases
exhibited by LEGSNet, and to a lesser extent GS-SVM, on these chemical and biological bench-
marks is due the ability of geometric scattering to compute complex connectivity features via its
multiscale diffusion wavelets. Thus, methods that rely on a scattering construction would in general
perform better, with the flexibility and trainability LEGSNet giving it an edge on most tasks.

Table 2: CASP GDT regression
over three seeds.

(µ± σ) Test MSE

LEGS-FCN 144.14 ± 15.48
LEGS-RBF 152.59 ± 14.56
LEGS-FIXED 160.03 ± 1.81
GCN 303.52 ± 18.90
GraphSAGE 219.44 ± 34.84
Baseline 402.21 ± 21.45

Graph Regression We next use a graph regression task from
the critical assessment of structure prediction (CASP) chal-
lenge [17]. The Global distance test (GDT) score measures the
similarity between tertiary structures of two proteins with amino-
acid correspondence. A higher score means two structures are
more similar. For a set of predicted 3D structures for a target
protein, we would like to score their quality as quantified by the
GDT score. Across all CASP targets we find that LEGSNet sig-
nificantly outperforms GNN and baseline methods (See Tables 2
and S4). This performance improvement is particularly stark on
the easiest structures (measured by average GDT) but is consistent across all structures. We draw
attention to target t0879, where LEGSNet shows the greatest improvement over other methods. This
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target has long range dependencies [18] as it exhibits metal coupling [19] creating long range con-
nections over the sequence. Since other methods are unable to model these long range connections
LEGSNet is particularly important on these more difficult to model targets.

5 Conclusion
In this work we established a relaxation from geometric scattering with strong guarantees to a pro-
gressively more flexible network with better performance, but fewer guarantees. Allowing the net-
work to choose data-driven diffusion scales leads to improved performance particularly on bio-
chemical datasets, while keeping strong guarantees on extracted features. This parameterization
has advantages in representing long range connections with a small number of weights, which are
necessary in complex biochemical data. This also opens the possibility to provide additional relax-
ation to enable node-specific tuning via attention mechanisms, which we regard as an exciting future
direction, but out of scope for the current work.
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Appendix

A Proofs for Section 2

A.1 Lemma 1

We first relax the construction of the diffusion matrix P that forms the lowpass filter used in the
scattering construction to encode adaptive laziness by setting Pα := αIn + (1− α)WD−1, where
α ∈ [1/2, 1] controls the reluctance of the random walk to transition from one node to another.
By enabling training of the laziness parameter, the learned transform will be able to control the
locality and rate of information propagation in the filters constructed from this random walk. At
this point, we note that one noticeable difference between the diffusion lowpass filter here and
the one typically used in GCN and its variation is the symmetrization applied in [1]. However,
[14] established that for the original construction, this is only a technical difference since P can
be regarded as self-adjoint under an appropriate measure which encodes degree variations in the
graph. This is then used to generate a Hilbert space L2(G,D−1/2) of graph signals with inner
product 〈x,y〉D−1/2 := 〈D−1/2x,D−1/2y〉. The following lemma shows that a similar property
is retained for our adaptive lowpass filter Pα.

Lemma 1. The matrix Pα is self-adjoint on the Hilbert space L2(G,D−1/2) from [14].

Let Mα = D−1/2PαD
1/2 then it can be verified that Mα is a symmetric conjugate of Pα, and

by construction is self-adjoint with respect to the standard inner product of L2(G). Let x,y ∈
L2(G,D−1/2) then we have

〈Pαx,y〉D−1/2 = 〈D−1/2Pαx,D−1/2y〉
= 〈D−1/2D1/2MαD

−1/2x,D−1/2y〉
= 〈MαD

−1/2x,D−1/2y〉
= 〈D−1/2x,MαD

−1/2y〉
= 〈D−1/2x,D−1/2D1/2MαD

−1/2y〉
= 〈D−1/2x,D−1/2Pαy〉
= 〈x,Pαy〉D−1/2 ,

which gives the result of the lemma.

A.2 Proof of Theorem 1

As shown in the previous proof (Sec. A.1), Pα has a symmetric conjugate Mα. Given the eigende-
composition Mα = QΛQT , we can write P t

α = D1/2QΛtQTD−1/2, giving the eigendecomposi-
tion of the propagated diffusion matrices. Furthermore, it can be verified that the eigenvalues on the
diagonal of Λ are nonnegative. Briefly, this results from graph Laplacian eigenvalues being within
the range [0, 1], which means those of WD−1 are in [−1, 1], which combined with 1/2 ≤ α ≤ 1
result in λi := [Λ]ii ∈ [0, 1] for every j. Next, given this decomposition we can write:

Φ′J = D1/2QΛtJQTD−1/2,

Ψ′j = D1/2Q(Λtj − Λtj+1)QTD−1/2, 0 ≤ j ≤ J − 1.

where we set t0 = 0 to simplify notations. Then, we have:

‖Φ′Jx‖2D−1/2 = 〈Φ′Jx,Φ′Jx〉D−1/2

= 〈D−1/2D1/2QΛtJQTD−1/2x, D−1/2D1/2QΛtJQTD−1/2x〉
= xTD−1/2QΛtJQTQΛtJQTD−1/2x = (xTD−1/2QΛtJ )(ΛtJQTD−1/2x)

= ‖ΛtJQTD−1/2x‖22
Further, since Q is orthogonal (as it is constructed from an eigenbasis of a symmetric matrix), if
we consider a change of variable to y = QTD−1/2x, we have ‖x‖2

D−1/2 = ‖D−1/2x‖22 = ‖y‖22
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while ‖Φ′Jx‖2D−1/2 = ‖ΛtJy‖22. Similarly, we can also reformulate the operation of other filters in
terms of diagonal matrices applied to y asW ′J as ‖Ψ′jx‖2D−1/2 = ‖(Λtj − Λtj+1)y‖22.

Given the reformulation in terms of y and standard L2(G), we can now write

‖ΛtJy‖22 +

J−1∑
j=0

‖(Λtj − Λtj+1)y‖22 =

n∑
i=1

y2
i ·
(
λ2tJ +

∑J−1

j=0
(λ
tj
i − λ

tj+1

i )2
)
.

Then, since 0 ≤ λi ≤ 1 and 0 = t0 < t1 < · · · < tJ we have

λ2tJ +

J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≤

λtJ +

J−1∑
j=0

λ
tj
i − λ

tj+1

i

2

=
(
λtJ + λt0i − λ

tJ
i

)2
= 1,

which yields the upper bound ‖ΛtJy‖22 +
∑J−1
j=0 ‖(Λtj − Λtj+1)y‖22 ≤ ‖y‖22. On the other hand,

since t1 > 0 = t0, then we also have

λ2tJ +

J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≥ λ2tJ + (1− λt1i )2

and therefore, by setting C := min0≤ξ≤1(ξ2tJ + (1− ξt1)2) > 0, whose positivity is not difficult to
verify, we get the lower bound ‖ΛtJy‖22 +

∑J−1
j=0 ‖(Λtj − Λtj+1)y‖22 ≥ C‖y‖22. Finally, applying

the reverse change of variable to x and L2(G,D−1/2) yields the result of the theorem.

A.3 Proof of Theorem 2

Denote the permutation group on n elements as Sn, then for a permutation Π ∈ Sn we let G = Π(G)
be the graph obtained by permuting the vertices of G with Π. The corresponding permutation opera-
tion on a graph signal x ∈ L2(G,D−1/2) gives a signal Πx ∈ L2(G,D−1/2), which we implicitly
considered in the statement of the theorem, without specifying these notations for simplicity. Rewrit-
ing the statement of the theorem more rigorously with the introduced notations, we aim to show that
U
′
pΠx = ΠU ′px and S

′
p,qΠx = S′p,qx under suitable conditions, where the operation U ′p from G

on the permuted graph G is denoted here by U
′
p and likewise for S′p,q we have S

′
p,q .

We start by showing U ′p is permutation equivariant. First, we notice that for any Ψj , 0 < j < J we
have that ΨjΠx = ΠΨjx, as for 1 ≤ j ≤ J − 1

ΨjΠx = (ΠP tjΠT −ΠP tj+1ΠT )Πx

= Π(P tj − P tj+1)x

= ΠΨjx.

Similar reasoning also holds for j ∈ {0, J}. Further, notice that for the element-wise nature of the
absolute value nonlinearity yields |Πx| = Π|x| for any permutation matrix Π. Using these two
observations, it follows inductively that

U
′
pΠx :=Ψ′jm |Ψ

′
jm−1

. . . |Ψ′j2 |Ψ
′
j1Πx|| . . . |

=Ψ′jm |Ψ
′
jm−1

. . . |Ψ′j2Π|Ψ′j1x|| . . . |
...

=ΠΨ′jm |Ψ
′
jm−1

. . . |Ψ′j2 |Ψ
′
j1x|| . . . |

=ΠU ′px.

To show S′p,q is permutation invariant, first notice that for any statistical moment q > 0, we have
|Πx|q = Π|x|q and further as sums are commutative,

∑
j(Πx)j =

∑
j xj . We then have

S
′
p,qΠx =

n∑
i=1

|U ′pΠx[vi]|q =

n∑
i=1

|ΠU ′px[vi]|q =

n∑
i=1

|U ′px[vi]|q = S′p,qx,

which, together with the previous result, completes the proof of the theorem.
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B Datasets

In this section we further analyze individual datasets. Relating composition of the dataset as shown
in Table S1 to the relative performance of our models as shown in Table S2.

DD [20]: Is a dataset extracted from the protein data bank (PDB) of 1178 high resolution pro-
teins. The task is to distinguish between enzymes and non-enzymes. Since these are high resolution
structures, these graphs are significantly larger than those found in our other biochemical datasets
with a mean graph size of 284 nodes with the next largest biochemical dataset with a mean size of
39 nodes.

ENZYMES [21]: Is a dataset of 600 enzymes divided into 6 balanced classes of 100 enzymes
each. As we analyzed in the main text, scattering features are better able to preserve the structure
between classes. LEGS-FCN slightly relaxes this structure but improves accuracy from 32 to 39%
over LEGS-FIXED.

NCI1, NCI109 [22]: Contains slight variants of 4100 chemical compounds encoded as graphs.
Each compound is separated into one of two classes based on its activity against non-small cell lung
cancer and ovarian cancer cell lines. Graphs in this dataset are 30 nodes with a similar number of
edges. This makes for long graphs with high diameter.

PROTEINS [21]: Contains 1178 protein structures with the goal of classifying enzymes vs. non
enzymes. GCN outperforms all other models on this dataset, however the Baseline model, where
no structure is used also performs very similarly. This suggests that the graph structure within this
dataset does not add much information over the structure encoded in the eccentricity and clustering
coefficient.

PTC [23]: Contains 344 chemical compound graphs divided into two classes based on whether
or not they cause cancer in rats. This dataset is very difficult to classify without features however
LEGS-RBF and LEGS-FCN are able to capture the long range connections slightly better than other
methods.

COLLAB [24]: 5000 ego-networks of different researchers from high energy physics, condensed
matter physics or astrophysics. The goal is to determine which field the research belongs to. The
GraphSAGE model performs best on this dataset although the LEGS-RBF network performs nearly
as well. Ego graphs have a very small average diameter. Thus shallow networks can perform quite
well on them as is the case here.

IMDB [24]: For each graph nodes represent actresses/actors and there is an edge between them
if they are in the same move. These graphs are also ego graphs around specific actors. IMDB-
BINARY classifies between action and romance genres. IMDB-MULTI classifies between 3 classes.
Somewhat surprisingly GS-SVM performs the best with other LEGS networks close behind. This
could be due to oversmoothing on the part of GCN and GraphSAGE when the graphs are so small.

REDDIT [24]: Graphs in REDDIT-BINARY/MULTI-5K/MULTI-12K datasets each graph rep-
resents a discussion thread where nodes correspond to users and there is an edge between two nodes
if one replied to the other’s comment. The task is to identify which subreddit a given graph came
from. On these datasets GCN outperforms other models.

CASP [17]: We use the CASP12 dataset [17] and preprocess the data similarly to [25], creating
a KNN graph between proteins based on the 3D coordinates of each amino acid. From this KNN
graph we regress against the GDT score. We evaluate on 12 proteins from the CASP12 dataset
and choose random (but consistent) splits with 80% train, 10% validation, and 10% test data out of
4000 total structures. We are only concerned with structure similarity so use no non-structural node
features.
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Table S1: Dataset statistics, diameter, nodes, edges, clustering coefficient averaged over all graphs.
Split into bio-chemical and social network types.

# Graphs # Classes Diameter Nodes Edges Clust. Coeff

DD 1178 2 19.81 284.32 715.66 0.48
ENZYMES 600 6 10.92 32.63 62.14 0.45
MUTAG 188 2 8.22 17.93 19.79 0.00
NCI1 4110 2 13.33 29.87 32.30 0.00
NCI109 4127 2 13.14 29.68 32.13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.51
PTC 344 2 7.52 14.29 14.69 0.01

COLLAB 5000 3 1.86 74.49 2457.22 0.89
IMDB-BINARY 1000 2 1.86 19.77 96.53 0.95
IMDB-MULTI 1500 3 1.47 13.00 65.94 0.97
REDDIT-BINARY 2000 2 8.59 429.63 497.75 0.05
REDDIT-MULTI-12K 11929 11 9.53 391.41 456.89 0.03
REDDIT-MULTI-5K 4999 5 10.57 508.52 594.87 0.03

Table S2: Mean ± std. over 10 test sets on bio-chemical and social datasets.
LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GS-SVM Baseline

DD 72.58 ± 3.35 72.07 ± 2.37 69.09 ± 4.82 67.82 ± 3.81 66.37 ± 4.45 72.66 ± 4.94 75.98 ± 2.81
ENZYMES 36.33 ± 4.50 38.50 ± 8.18 32.33 ± 5.04 31.33 ± 6.89 15.83 ± 9.10 27.33 ± 5.10 20.50 ± 5.99
MUTAG 33.51 ± 4.34 82.98 ± 9.85 81.84 ± 11.24 79.30 ± 9.66 81.43 ± 11.64 85.09 ± 7.44 79.80 ± 9.92
NCI1 74.26 ± 1.53 70.83 ± 2.65 71.24 ± 1.63 60.80 ± 4.26 57.54 ± 3.33 69.68 ± 2.38 56.69 ± 3.07
NCI109 72.47 ± 2.11 70.17 ± 1.46 69.25 ± 1.75 61.30 ± 2.99 55.15 ± 2.58 68.55 ± 2.06 57.38 ± 2.20
PROTEINS 70.89 ± 3.91 71.06 ± 3.17 67.30 ± 2.94 74.03 ± 3.20 71.87 ± 3.50 70.98 ± 2.67 73.22 ± 3.76
PTC 57.26 ± 5.54 56.92 ± 9.36 54.31 ± 6.92 56.34 ± 10.29 55.22 ± 9.13 56.96 ± 7.09 56.71 ± 5.54

COLLAB 75.78 ± 1.95 75.40 ± 1.80 72.94 ± 1.70 73.80 ± 1.73 76.12 ± 1.58 74.54 ± 2.32 64.76 ± 2.63
IMDB-BINARY 64.90 ± 3.48 64.50 ± 3.50 64.30 ± 3.68 47.40 ± 6.24 46.40 ± 4.03 66.70 ± 3.53 47.20 ± 5.67
IMDB-MULTI 41.93 ± 3.01 40.13 ± 2.77 41.67 ± 3.19 39.33 ± 3.13 39.73 ± 3.45 42.13 ± 2.53 39.53 ± 3.63
REDDIT-BINARY 86.10 ± 2.92 78.15 ± 5.42 85.00 ± 1.93 81.60 ± 2.32 73.40 ± 4.38 85.15 ± 2.78 69.30 ± 5.08
REDDIT-MULTI-12K 38.47 ± 1.07 38.46 ± 1.31 39.74 ± 1.31 42.57 ± 0.90 32.17 ± 2.04 39.79 ± 1.11 22.07 ± 0.98
REDDIT-MULTI-5K 47.83 ± 2.61 46.97 ± 3.06 47.17 ± 2.93 52.79 ± 2.11 45.71 ± 2.88 48.79 ± 2.95 36.41 ± 1.80

B.1 LEGS preserves enzyme exchange preferences while increasing performance

Figure S1: Enzyme class exchange pref-
erences empirically observed in [26], and
estimated from LEGS and GCN embed-
dings.

One advantage of geometric scattering over other graph
embedding techniques lies in the rich information
present within the scattering feature space. This was
demonstrated in [8] by showing the embeddings created
through graph scattering can be used to accurately infer
inter-graph relationships. Scattering features of enzyme
graph within the ENZYMES dataset [21] possessed suf-
ficient global information to recreate the enzyme class
exchange preferences, observed empirically by Cuesta
et al. [26], using only linear methods of analysis, and
despite working with a much smaller and artificially bal-
anced dataset. We demonstrate here that LEGSNet re-
tains similar descriptive capabilities, as shown in Fig-
ure S1 via chord diagrams where each exchange pref-
erence between enzyme classes [estimated as suggested
in 8] is represented as ribbon of the corresponding size.
Our results here (and in Table S5, which provides com-
plementary quantitative comparison) show that, with
relaxations on the scattering parameters, LEGS-FCN
achieves better classification accuracy than both LEGS-
FIXED and GCN (see Table S1) while also retaining a
more descriptive embedding that maintains the global
structure of relations between enzyme classes.
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Table S3: Mean ± std. over test set selection on cross-validated LEGS-RBF Net with reduced
training set size.

Train, Val, Test % 80%, 10%, 10% 70%, 10%, 20% 40%, 10%, 50% 20%, 10%, 70%

COLLAB 75.78 ± 1.95 75.00 ± 1.83 74.00 ± 0.51 72.73 ± 0.59
DD 72.58 ± 3.35 70.88 ± 2.83 69.95 ± 1.85 69.43 ± 1.24
ENZYMES 36.33 ± 4.50 34.17 ± 3.77 29.83 ± 3.54 23.98 ± 3.32
IMDB-BINARY 64.90 ± 3.48 63.00 ± 2.03 63.30 ± 1.27 57.67 ± 6.04
IMDB-MULTI 41.93 ± 3.01 40.80 ± 1.79 41.80 ± 1.23 36.83 ± 3.31
MUTAG 33.51 ± 4.34 33.51 ± 1.14 33.52 ± 1.26 33.51 ± 0.77
NCI1 74.26 ± 1.53 74.38 ± 1.38 72.07 ± 0.28 70.30 ± 0.72
NCI109 72.47 ± 2.11 72.21 ± 0.92 70.44 ± 0.78 68.46 ± 0.96
PROTIENS 70.89 ± 3.91 69.27 ± 1.95 69.72 ± 0.27 68.96 ± 1.63
PTC 57.26 ± 5.54 57.83 ± 4.39 54.62 ± 3.21 55.45 ± 2.35
REDDIT-BINARY 86.10 ± 2.92 86.05 ± 2.51 85.15 ± 1.77 83.71 ± 0.97
REDDIT-MULTI-12K 38.47 ± 1.07 38.60 ± 0.52 37.55 ± 0.05 36.65 ± 0.50
REDDIT-MULTI-5K 47.83 ± 2.61 47.81 ± 1.32 46.73 ± 1.46 44.59 ± 1.02

Table S4: Test set mean squared error on CASP GDT regression task across targets over 3 non-
overlapping test sets.

LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE Baseline

t0860 197.68 ± 34.29 164.22 ± 10.28 206.20 ± 28.46 314.90 ± 29.66 230.45 ± 79.72 414.41 ± 26.96
t0868 131.42 ± 8.12 127.71 ± 14.26 178.45 ± 5.64 272.14 ± 26.34 191.08 ± 21.96 411.98 ± 57.39
t0869 106.69 ± 9.97 132.12 ± 31.37 104.47 ± 14.16 317.22 ± 12.75 244.38 ± 40.58 393.12 ± 48.70
t0872 144.11 ± 24.88 148.20 ± 23.63 134.48 ± 8.25 293.96 ± 19.00 221.13 ± 28.74 374.48 ± 33.70
t0879 89.00 ± 44.94 80.14 ± 16.21 64.63 ± 15.92 309.23 ± 69.40 172.41 ± 73.07 364.79 ± 144.32
t0900 193.74 ± 10.78 171.05 ± 25.41 158.56 ± 9.87 254.11 ± 18.63 209.07 ± 11.90 399.16 ± 83.48
t0912 113.00 ± 22.31 169.55 ± 27.35 150.70 ± 8.53 227.17 ± 22.11 192.28 ± 39.45 406.25 ± 31.42
t0920 80.46 ± 14.98 136.94 ± 36.43 84.83 ± 19.70 361.19 ± 71.25 261.72 ± 59.67 398.22 ± 25.60
t0921 187.89 ± 46.15 165.97 ± 42.39 142.97 ± 27.09 382.69 ± 20.27 260.49 ± 16.09 363.92 ± 35.79
t0922 254.83 ± 91.28 110.54 ± 43.99 227.73 ± 26.41 366.72 ± 8.10 290.71 ± 7.22 419.14 ± 45.49
t0942 188.55 ± 11.10 167.53 ± 22.01 137.21 ± 7.43 371.31 ± 9.90 233.78 ± 84.95 393.03 ± 24.93
t0944 146.59 ± 8.41 138.67 ± 50.36 245.79 ± 58.16 263.03 ± 9.43 199.40 ± 51.11 404.12 ± 40.82

We ran two varieties of LEGSNet on the ENZYMES dataset: LEGS-FIXED and LEGS-FCN, which
allows the diffusion scales to be learned. For comparison, we also ran a standard GCN whose graph
embeddings were obtained via mean pooling. To infer enzyme exchange preferences from their
embeddings, we followed [8] in defining the distance from an enzyme e to the enzyme class ECj
as dist(e,ECj) := ‖ve − projCj

(ve)‖, where vi is the embedding of e, and Cj is the PCA subspace
of the enzyme feature vectors within ECj . The distance between the enzyme classes ECi and ECj
is the average of the individual distances, mean{dist(e,ECj) : e ∈ ECi}. From here, the affinity
between two enzyme classes is computed as pref(ECi,ECj) = wi/min(

Di,i

Di,j
,
Dj,j

Dj,i
), where wi is

the percentage of enzymes in class i which are closer to another class than their own, and Di,j is the
distance between ECi and ECj .

C Training Details

We train all models for a maximum of 1000 epochs with an initial learning rate of 1e−4 using the
ADAM optimizer [27]. We terminate training if validation loss does not improve for 100 epochs
testing every 10 epochs. Our models are implemented with Pytorch [28] and Pytorch geometric.
Models were run on a variety of hardware resources. For all models we use q = 4 normalized
statistical moments for the node to graph level feature extraction andm = 16 diffusion scales in line
with choices in [8].
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Table S5: Quantified distance between the empirically observed enzyme class exchange preferences
of [26] and the class exchange preferences inferred from LEGS-FIXED, LEGS-FCN, and a GCN.
We measure the cosine distance between the graphs represented by the chord diagrams in Figure S1.
As before, the self-affinities were discarded. LEGS-Fixed reproduces the exchange preferences the
best, but LEGS-FCN still reproduces well and has significantly better classification accuracy.

LEGS-FIXED LEGS-FCN GCN

0.132 0.146 0.155

C.1 Cross Validation Procedure

For all datasets we use 10-fold cross validation with 80% training data 10% validation data and 10%
test data for each model. We first split the data into 10 (roughly) equal partitions. For each model we
take exactly one of the partitions to be the test set and one of the remaining nine to be the validation
set. We then train the model on the remaining eight partitions using the cross-entropy loss on the
validation for early stopping checking every ten epochs. For each test set, we use majority voting
of the nine models trained with that test set. We then take the mean and standard deviation across
these test set scores to average out any variability in the particular split chosen. This results in 900
models trained on every dataset. With mean and standard deviation over 10 ensembled models each
with a separate test set.
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