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Abstract

GNNs for molecular property prediction are frequently underspecified by data and
fail to generalise to new scaffolds at test time. A potential solution is Bayesian
learning, which can capture our uncertainty in the model parameters. This study
benchmarks a set of Bayesian methods applied to a directed MPNN, using the
QM9 regression dataset. We find that capturing uncertainty in both readout and
message passing parameters yields enhanced predictive accuracy, calibration, and
performance on a downstream molecular search task.

1 Introduction

Graph neural networks (GNNs) are the state-of-the-art approach to molecular property prediction
(Duvenaud et al., 2015; Gilmer et al., 2017; Wu et al., 2018; Yang et al., 2019). A GNN operates
on the graph structure of a molecule in two phases. In the message passing phase, a molecular
representation is learned by passing messages between atom or bond states. In the readout phase, a
feed forward network (FFN) converts this representation into a prediction.

Motivation. The particular challenges of molecular property prediction marry well with the potential
advantages of Bayesian learning. Generalisation is made difficult in cheminformatics by the concept
of a molecular scaffold: the structural core of a compound to which functional groups are attached.
Highly parameterised GNNs are prone to over-fit to training scaffolds, learning a poor molecular
representation and failing to generalise at test time (Yang et al., 2019). Models are at risk of returning
over-confident predictions when operating on new scaffolds, conveying little of the uncertainty
associated with a new chemical space. Poorly quantified uncertainty makes it especially challenging
to evaluate model robustness and out-of-domain applicability (Hirschfeld et al., 2020). We believe the
best answer to these deficiencies is Bayesian modelling. Whereas a ‘classical’ neural network bets
everything on one hypothesis, a Bayesian approach builds a predictive distribution by considering
every possible setting of parameters. Bayesian marginalisation can improve the calibration (Maddox
et al., 2019) and accuracy (Izmailov et al., 2019) of deep neural networks underspecified by data.

Related work. Two recent studies are particularly pertinent. Firstly, Hirschfeld et al. (2020) bench-
mark a set of methods for uncertainty quantification in molecular property prediction using the same
GNN architecture that we employ in this paper. They find no consistently leading method, though
replacing readout with a Gaussian process (GP) or random forest leads to reasonable performance
across evaluation metrics. We extend the work of Hirschfeld et al. by considering four additional
Bayesian methods (SWAG, SGLD, BBP and DUN). Secondly, Hwang et al. (2020) benchmark
a set of Bayesian GNNs for molecular property prediction, assessing calibration and predictive
accuracy across four classification datasets. They find that Stochastic Weight Averaging (SWA) and
SWA-Gaussian (SWAG) demonstrate superior performance across metrics and datasets. We extend
the work of Hwang et al. by (i) working in the regression setting where aleatoric and epistemic
uncertainty are more explicitly separable, (ii) directly comparing a Bayesian readout phase with a full
Bayesian GNN, and (iii) featuring a downstream molecular search experiment.

We release PyTorch code at https://github.com/georgelamb19/chempropBayes.
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Table 1: Accuracy (measured by Mean Rank), Miscalibration Area (MA) and Search Scores. For
single models we present the mean and standard deviation across 5 runs. MAs are computed with
post-hoc t-distribution likelihoods and presented ×102. Search Scores equate to the % of the top 1%
of molecules discovered after 30 batch additions. All Search Scores are computed for single models.

Method Accuracy (Mean Rank) Miscalibration Area Search Score

Single model Ensmbl. Single model Ensmbl. Greedy Thompson

MAP 4.08 ± 0.16 4.00 04.20 ± 0.42 13.97 72.22 ± 0.57 n/a
GP 3.87 ± 0.42 3.17 09.12 ± 0.98 20.28 75.22 ± 1.31 75.86 ± 0.85
DropR 7.05 ± 0.15 7.00 14.59 ± 0.37 22.09 75.38 ± 1.32 76.02 ± 1.09
DropA 7.87 ± 0.19 8.00 16.58 ± 0.47 21.98 77.52 ± 0.77 77.34 ± 0.88
SWAG 3.55 ± 0.12 3.25 09.29 ± 1.78 17.89 73.48 ± 0.75 73.14 ± 0.59
SGLD 3.23 ± 0.51 3.75 01.79 ± 1.03 14.63 69.12 ± 1.13 69.70 ± 1.31
BBP 1.95 ± 0.40 1.75 04.22 ± 0.57 16.51 62.27 ± 6.42 61.63 ± 3.87
DUN 4.40 ± 0.25 5.08 04.36 ± 0.39 16.18 - -

2 Model and Data

The D-MPNN. Our GNN is a directed message passing neural network (D-MPNN) (Yang et al.,
2019), a variant of the MPNN family (Gilmer et al., 2017). The D-MPNN consistently matches or
outperforms previous GNN architectures across datasets and splits types (Yang et al., 2019). It has
also demonstrated promise in a proof-of-concept antibiotic discovery pipeline (Stokes et al., 2020).
The D-MPNN is the core of the Chemprop project (https://chemprop.readthedocs.io).

QM9. We perform all experiments on QM9. QM9 contains 12 geometric, energetic, electronic and
thermodynamic properties for 133,885 small molecules (Ramakrishnan et al., 2014). Assessments
of uncertainty calibration in Bayesian deep learning tend to focus on classification tasks (Laksh-
minarayanan et al., 2017; Maddox et al., 2019). We complement previous studies by exploring
calibration and uncertainty quantification in a real-valued regression setting.

3 Methods

We implement eight separate methods. MAP: Our baseline is classical maximum a posteriori training,
in which we find the regularised maximum likelihood solution. GP: We replace the final layer
of the readout FFN with a variational GP and train the resulting model end-to-end (deep kernel
learning). The GP is a non-parametric Bayesian method which captures uncertainty in functional
form. DropR: MC dropout uses a spike and slab variational distribution to view test time dropout
as approximate variational inference (Gal and Ghahramani, 2016). ‘DropR’ is the implementation
of MC dropout across readout FFN layers. DropA: We separately implement MC dropout over the
full GNN. SWAG: Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) computes an average
of SGD iterates with a high constant learning rate schedule, providing improved generalisation. We
implement SWA-Gaussian (Maddox et al., 2019), which builds on SWA by computing a ‘low rank
plus diagonal’ covariance. SGLD: Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011)
uses first order Langevin dynamics in the stochastic gradient setting. SGLD is a Markov Chain Monte
Carlo (MCMC) method. Within this class of methods Hamiltonian Monte Carlo (HMC) (Neal, 1994)
is the gold standard, but requires full gradients which are intractable for modern neural networks.
Chen et al. (2014) propose Stochastic Gradient HMC (SGHMC), but in practice tuning this method
can be challenging. BBP: Variational Bayesian (VB) methods fit a variational approximation to the
true posterior by minimising a Kullback–Leibler (KL) divergence or equivalently maximising an
evidence lower bound (ELBO). Bayes by Backprop (BBP) (Blundell et al., 2015) assumes a fully
factorised Gaussian posterior and utilises a reparameterisation trick to sample gradients; we also
use ‘local reparameterisation’ (Kingma et al., 2015) as a variance reduction technique. DUN: As an
addition to the set of established methods above we implement a novel depth uncertainty network
(DUN), which permits inference over both weights and the number of message passing iterations.
Our DUN combines Bayes by Backprop with the ‘vanilla’ DUN proposed by Antorán et al. (2020),
and is introduced in Appendix B. For context, Bayesian modelling is reviewed in Appendix A.
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Figure 1: Reliability diagrams for single models given Gaussian likelihoods (left) and post-hoc
t-distribution likelihoods (right). Each line on the diagrams is the average of 5 runs.

4 Experiments

4.1 Predictive accuracy and calibration

Framework. We perform 5 runs for each of the 8 methods, corresponding to different random seeds
for weight initialisation. The runs enable an analysis of both ‘single’ models and model ensembles,
the latter incorporating multiple posterior basins of attraction. We analyse single models by averaging
scores across runs, computing a mean and standard deviation. We form a model ensemble by averaging
predictive distributions across runs, constituting a second layer of Bayesian model averaging. For
calibration analysis we model aleatoric noise; a scalar noise per QM9 property is learned within the
D-MPNN. Each posterior sample yields an individual Gaussian predictive distribution, representing
aleatoric uncertainty. The full Bayesian predictive distribution is a mixture of Gaussians, representing
aleatoric and epistemic uncertainty. We create our own data split with [train/val/test] proportions
[0.64, 0.16, 0.20] using Chemprop’s ‘scaffold split’ function, which partitions molecules into bins
based on their Murcko scaffold. Method implementation is detailed in Appendix C.

Evaluation. We measure the mean absolute error (MAE) of Bayesian predictive means and rank
methods for each of the 12 QM9 tasks. The mean rank across 12 tasks is our chief accuracy evaluation
metric. To assess calibration we generalise reliability diagrams (Guo et al., 2017) to the regression
setting and aggregate QM9 tasks. We consider confidence intervals (CIs) around the Bayesian
predictive mean. CI size is plotted on the x-axis. On the y-axis we plot the proportion of molecules
in our test set falling within each CI, minus CI size. A perfectly calibrated model is represented by
the line y = 0. We summarise performance on the reliability diagram by computing miscalibration
area (MA); the average absolute difference between confidence and accuracy.

Results (accuracy). Results are presented in Table 1 and Appendix D. The leading methods in
both single and ensemble settings are BBP, SGLD, SWAG and GP. SGLD and SWAG may suffer
slightly versus BBP because they employ vanilla SGD optimisation rather than Adam. SGLD has
a higher rank in the single model setting where it is distinguished by its ability to explore multiple
posterior modes. Note that the GP captures uncertainty only in readout. Dropout performance is poor,
which perhaps could be attributed to an insufficiently large network. DUN accuracy results should
be considered in light of the fact that the variational posterior over depths collapses to d = 5 (we
consider depths of 1 to 5), indicating that it has likely failed to capture the true posterior correctly.

Results (calibration). Reliability diagrams are shown in Figure 1 and Appendix E. With original
Gaussian likelihoods we observe pathological underconfidence across methods. We find that this
universal underconfidence is driven by overestimated aleatoric uncertainty, a consequence of heavy-
tailed residual distributions containing extreme outliers. We improve calibration by fitting post-hoc
t-distribution likelihoods to training residuals. MA results for post-hoc t-distribution likelihoods are
shown in Table 1. The post-hoc results motivate re-training with a gamma prior over the precision
of our Gaussian likelihood function; placing a prior Gam(τ |a, b) over τ and integrating out the
precision we obtain a marginal distribution which, after conventional reparameterisation, equates to
the t-distribution (see Bishop (2006, section 2.3.7)). We leave this to future work.
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4.2 Molecular search

Framework. We follow the approximate Bayesian optimisation setup in Hernández-Lobato et al.
(2017), running both Thompson sampling and greedy trials. Given an unlabelled dataset, the goal is
to discover molecules with the largest values of some target property in as few evaluations as possible.
At each Thompson iteration we: (i) draw S posterior samples to obtain S deterministic regressors;
(ii) for each sample find the molecule with the largest predicted target value, yielding a total batch
of S molecules; (iii) query said batch and add it to the labelled training set. Our dataset is a 100k
subset of QM9 and our target is the first QM9 property, ‘mu’. We begin with 5k labelled molecules
(selected uniformly at random) and make 30 batch additions with S = 50. We perform 5 runs per
method, corresponding to different base labelled sets and random weight initialisations.
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Figure 2: Search trajectories for Thompson sam-
pling. Fractions are averaged over 5 runs.

Evaluation. After each batch addition we measure
the fraction of the top 1% of molecules discovered.
The final metric used to compare methods is the
fraction discovered following 30 batch additions,
at the close of the experiment. At this point there
are 6.5k labelled molecules.

Results. Search scores are presented in Table 1.
Thompson sampling trajectories are shown in Fig-
ure 2 alongside a Monte Carlo baseline. We omit
DUN given the collapse of the posterior over depths.
As explained in Hernández-Lobato et al. (2017),
Thompson sampling uses epistemic variance in the
Bayesian predictive distribution to perform explo-
ration. In contrast, greedy search selects molecules
using the Bayesian predictive mean and exercises
pure exploitation. Across methods we find no no-
table difference between Thompson and greedy
search scores. This likely reflects reduced epis-
temic uncertainty; having randomly selected a sub-
set of 5k molecules to initially label we are op-
erating ‘in-distribution’. We considered smaller initially labelled sets but found BBP performed
particularly poorly. Tuning BBP, SGLD and SWAG without a large validation set is challenging. In
contrast, dropout methods and the GP demonstrate robustness to dataset size and hyperparameter
settings. The particular success of dropout might also be attributed to its regularising effect.

5 Discussion and Future Work

The most performant methods involve Bayesian message passing as well as a Bayesian FFN. We
conclude that there is meaningful and useful epistemic uncertainty to be captured in learned molecular
representations as well as in readout.

When applied to the full QM9 dataset, BBP, SGLD and SWAG enhance accuracy versus a MAP
baseline. However, in the context of molecular search the sensitivity of these methods is limiting.
Our recommendations follow the observed trends. For precise property prediction with > 10, 000
labelled molecules we suggest experimenting with BBP, SGLD, and SWAG. For molecular search,
the robustness of dropout and deep kernel learning to different dataset sizes and hyperparameter
settings is advantageous. Our results suggest single model SGLD is the best method for obtaining
calibrated uncertainty estimates, though this is likely to be a task-specific phenomenon; extreme
outlying residuals are still affecting calibration results despite post-hoc t-distribution likelihoods.

We identify three avenues for future work: (i) benchmarking Bayesian GNNs on the complete Molecu-
leNet dataset collection (see here); the majority of these datasets contain < 10, 000 molecules; (ii)
adapting our D-MPNN by placing a gamma prior over the Gaussian likelihood precision, increasing
network size for dropout, and experimenting with larger depths (following the DUN posterior col-
lapse we trial depths up to d = 8 and find accuracy increases monotonically); and (iii) incorporating
meta-learning into Bayesian GNNs to improve initialisation in search tasks; meta-initialisations
enable rapid learning in low resource settings (Nguyen et al., 2020).

4
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Appendices

The appendices are structured as follows:

• Appendix A reviews the main concepts underlying Bayesian modelling, for readers less
familiar with the Bayesian framework.

• Appendix B introduces our depth uncertainty network (DUN) which permits inference over
both model weights and the number of message passing iterations.

• Appendix C describes the implementation of methods, and explains key hyperparameter
choices.

• Appendix D contains granular predictive accuracy results (scaled MAE by task).
• Appendix E contains a full set of reliability diagrams. Three diagram pairs correspond to (i)

Gaussian likelihoods, (ii) post-hoc t-distribution likelihoods, and (iii) omission of modelled
aleatoric noise.

A Bayesian Modelling

Wilson (2020) emphasises that the distinguishing property of a Bayesian approach is marginalisation
rather than optimisation. A Bayesian approach forms a predictive distribution by marginalising
over different parameter settings, each weighted by their posterior probability. In contrast, classical
learning involves maximising a posterior.

A.1 Bayesian marginalisation

We consider the case of Bayesian parametric regression. Given inputs X and outputs Y , we desire
the parameters ω of a function fω(·) that is likely to have generated our inputs. We place a prior p(ω)
over the space of possible parameter settings, representing our a priori belief about which parameters
are likely to have generated the data. To transform the prior distribution in light of the observed
data we define a likelihood distribution p(y|x, ω), the probabilistic model by which inputs generate
outputs for parameter settings ω. We look for the posterior distribution over the space of parameters
by invoking Bayes’ theorem:

p(ω|D) =
p(Y |X,ω)p(ω)

p(Y |X)
.

A predictive distribution is obtained by marginalising over ω:

p(y|x,D) =

∫
p(y|x, ω)p(ω|D)dω. (1)

Equation (1) is a Bayesian model average (BMA), representing model uncertainty.

A.2 Bayesian deep learning

Modern neural networks often contain millions of parameters. The posterior over these parameters is
generally intractable. In Bayesian deep learning we deal with the problem of inference by making
two, layered approximations. Firstly, we approximate the Bayesian posterior. Methods differ with
respect to posterior approximation. Secondly, we approximate the Bayesian integral (1) by Monte
Carlo (MC) sampling. MC integration is common across methods.

With q(ω|D) our approximate posterior, the MC BMA is:

p(y|x,D) ≈ 1

J

J∑
j=1

p(y|x, ωj), ωj ∼ q(ω|D).

Following MC integration, we have approximated the true posterior with a set of point masses, where
their locations are given by samples from q(ω|D):

p(ω|D) ≈ 1

J

J∑
j=1

δ(ω = ωj), ωj ∼ q(ω|D).
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B The Depth Uncertainty Network

Here we consider capturing uncertainty in model weights and the number of message passing itera-
tions. For simplicity we refer to the latter parameter as ‘depth’. There is motivation to acknowledge
and capture uncertainty in the MPNN depth parameter. Different depths allow hidden states to repre-
sent different sized molecular substructures. Incorporating different sized spheres of representation at
test time may enhance predictive accuracy.

B.1 Depth uncertainty in an FFN

Antorán et al. (2020) perform inference over the depth of an FFN. Different depths correspond to
subnetworks which share weights. Exploiting the sequential structure of FFNs, Antorán et al. evaluate
a training objective and make predictions with a single forward pass.

Antorán et al. define a categorical prior over network depth, pβ(d) = Cat(d|{βi}Di=0). They
parameterise the likelihood for each depth using the corresponding subnetwork’s output: p(y|x, d =
i, ω) = p(y|fD+1(ai, ω)). Here, fD+1(·) is an output layer and ai the activation at depth i ∈ [0, D]
given input x and weight configuration ω. For a given weight configuration, the likelihood for each
depth and consequently the model’s marginal log likelihood (MLL) can be computed from a single
forward pass. The MLL is computed as

log p(D, ω) = log

D∑
i=0

(
pβ(d = i) ·

N∏
n=1

p(y(n)|x(n), d = i, ω)

)
.

The posterior over depth is a tractable categorical distribution which tells us how well each subnetwork
explains the data given some set of weights ω:

p(d|D, ω) =
p(D|d, ω)pβ(d)

p(D, ω)
.

Antorán et al. try learning weights by maximising the MLL directly using backpropagation and the
log-sum-exp trick, but find the posterior collapses to a delta function over an arbitrary depth. This is
explained by the gradients of each subnetwork being weighted by that subnetwork’s posterior mass,
leading to local optima where all but one subnetwork’s gradients vanish.

The solution is to separate the optimisation of network weights from the posterior distribution as
in the expectation maximisation (EM) algorithm for latent variable models. Antorán et al. achieve
this by performing stochastic gradient variational inference. They introduce a variational posterior
qα(d) = Cat(d|{αi}Di=0). They learn variational parameters α and weights ω by maximising the
following ELBO:

log p(D, ω) ≥ L(α, ω) =

N∑
n=1

Eqα(d)

[
log p(y(n)|x(n), d, ω)

]
− KL(qα(d) || pβ(d)).

Maximising this ELBO by taking gradients actually constitutes exact inference. The ELBO is convex
w.r.t. α because the variational and true posteriors are categorical. The variational family contains the
exact posterior, thus at the maxima qα(d) = p(d|D, ω).

B.2 Incorporating uncertainty in model weights

Our depth uncertainty network (DUN) combines the model above with Bayes by Backprop. We
assume a fully factorised variational posterior over depth and neural network weights. We derive an
ELBO by expanding the KL divergence:

KL
[
q(d|α)q(ω|θ) || p(d|D, ω)p(ω|D)

]
= KL

[
q(d|α) || p(d)

]
+ KL

[
q(ω|θ) || p(ω)

]
− Eq(d|α)q(ω|θ)[log p(D|d, ω)] + log p(D)

= −L(α, θ) + log p(D).

L(α, θ) here is the ELBO. Due to the non-negativity of the KL divergence, L(α, θ) ≤ log p(D).
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We can learn variational parameters α and θ by maximising the ELBO using backpropagation. The
KL term involving categorical distributions and the expectation of the log likelihood w.r.t. the
posterior over depth can be computed analytically with a single forward pass. Expectations w.r.t. the
variational posterior q(ω|θ) are estimated as in Bayes by Backprop, by sampling unbiased gradients.

In practice we can use mini-batches, estimating the ELBO as follows:

L(ω, α, θ) ≈ N

B

B∑
n=1

D∑
i=0

(
log p(y(n)|x(n), d = i, ω) · αi

)
− log

q(ω|θ)
p(ω)

−
D∑
i=0

(
αi log

αi
βi

)
.

(2)

At test time, predictions for new data are made by the following Bayesian model average:

p(y∗|x∗,D) ≈ 1

J

J∑
j=1

D∑
i=0

p(y∗|x∗, d = i, ωj)qα(d = i),

ωj ∼ q(ω|θ).

C Implementation of Methods

In this section we describe the implementation of methods for the predictive accuracy and calibration
experiment. Unless otherwise specified, hyperparameters are set to optimise validation MAE (aver-
aged across QM9 tasks) following grid-search. An exhaustive list of the hyperparameter settings for
all our experiments can be found in the file chempropBayes/scripts/bayesHyp.py.

C.1 MAP

In order to learn aleatoric noise we instantiate a log standard deviation parameter within the D-MPNN
model (the log ensures non-negativity). This parameter is a set of 12 scalars, one for each of the QM9
tasks. We henceforth refer to the parameter as ‘log noise’.

Our full loss object is the negative log likelihood plus the negative log prior. A function to compute
the former takes as input predictions, targets and log noise. We place a zero-mean Gaussian prior over
each D-MPNN weight and control σprior via a weight decay hyperparameter λ inside our optimiser.
In practice we scale the negative log likelihood to a manageable order of magnitude by dividing by
the batch size. This scales the relationship between weight decay and our prior sigma. Precisely, we
have λ = 1/σ2

priorN where N is the training set size.

The default batch size in Chemprop is 50 and we find this works well; we use this batch size across
all methods. Our optimiser is Adam. Following grid search we set the weight decay to λ = 0.01.

Chemprop utilises a ‘noam’ learning rate scheduler with piecewise linear increase and exponential
decay (based on the scheduler in Vaswani et al. (2017)). We train for 200 epochs, using the ‘noam’
scheduler for the first 100. We linearly increase the learning rate from lrmin to lrmax over 2 epochs
and decay back to lrmin over the following 98, from which point we remain at lrmin. Following grid
search we set lrmin = 1e-4 and lrmax = 1e-3. The saved MAP model following each training run is that
which achieves the best validation accuracy. We also apply this selection procedure to GP, DropR,
DropA, BBP and DUN.

Architecture. We grid search over 24 architectures, exploring combinations of hidden size h ∈
{300, 500}, message passing depth d ∈ {2, 3, 4, 5} and number of FFN readout layers L ∈ {2, 3, 4}.
We find that (h, d, L) = (500, 5, 3) achieves optimal accuracy. We choose not to investigate larger
hidden sizes or depths to manage compute requirements. For context, the Chemprop defaults are
(h, d, L) = (300, 3, 2). We maintain a fixed architecture across all methods.

Standardising features and targets. Before training the D-MPNN we standardise atom and bond
features in the training set, and apply the same transformation to validation and test molecules. We
also standardise training targets, later applying the reverse transform when making predictions on
validation or test molecules. Both these standardisations occur across all methods.

9



C.2 GP

Each GP run is initialised with the output of the corresponding MAP run (e.g. GP run 1 is initialised
with the output of MAP run 1). We take the pre-trained MAP D-MPNN and replace the final layer
of readout with 12 batched stochastic variational GPs (SVGPs), one per task. We train the resulting
architecture end-to-end. This end-to-end training is known as deep kernel learning (DKL).

We implement the GPs in GPyTorch, following the example SVGP and DKL implementations
as a guide (https://docs.gpytorch.ai). Our variational distribution is a multivariate normal
(‘CholeskyVariationalDistribution’) with batch shape 12. We use a multitask variational strategy with
1200 inducing points based on methodology in Hensman et al. (2013). The variational strategy tells
us how to transform a distribution q(u) over the inducing point values to a distribution q(f) over the
latent function values for some input x. 1200 is the maximum feasible number of inducing points
given compute constraints (corresponding to 10-15 minutes per epoch on a single GPU node). We
note that the closeness of the variational GP approximation to the true posterior increases only with
the log of the number of inducing points (Matthews et al., 2016).

Each GP is defined by a constant mean and RBF kernel. We train GP hyperparameters, a scalar
aleatoric noise per task and D-MPNN weights by minimising a negative variational ELBO. We train
with a batch size of 50 for 200 epochs, following the same learning rate profile as for MAP. We use
the Adam optimiser. For fair comparison with other methods we regularise D-MPNN weights with a
weight decay of 0.01.

C.3 DropR, DropA

The dropout models follow a similar training procedure to MAP; here we highlight differences. For
DropR we activate dropout layers following the D-MPNN atom representation step, and following
every FFN layer except for the output layer. For DropA we additionally activate dropout layers
following D-MPNN hidden state updates.

For both DropR and DropA we grid search over p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (these are dropout
probabilities). For both DropR and DropA the optimal probability is 0.1. We run the final models
with this dropout probability during training and testing.

Both dropout methods take significantly longer to converge than MAP. This is expected given the
noise inherent in dropout. We train for 300 epochs, extending the MAP learning rate profile by 100
additional epochs at a fixed learning rate of lrmin = 1e-4. At test time we draw 30 samples.

C.4 SWAG

The SWAG implementation is based on code attached to the original SWAG paper (Maddox et al.,
2019). We first build a wrapper around the D-MPNN, referring to the latter as our ‘base’ model. The
wrapper contains a list of the parameter objects in the base model (where a parameter ‘object’ is, for
example, a weight matrix). Within the wrapper list (which includes log noise) we register buffers
for each parameter object to store first and second uncentred moments. During training we ‘collect’
models by looping through parameter objects in the base model and updating buffers in the wrapper
list. At test time we generate new sample parameters directly within the wrapper list. Because the
parameter objects in the list point to the same place in memory as the parameters in the base model,
base model parameters also change when we sample.

The starting point for SWAG training is the pre-trained MAP model. We run SWAG training for
100 epochs, collecting one model per epoch after 20 warm-up epochs (thus collecting 80 models in
total). We limit the rank of our estimated covariance matrix by using only the last K = 20 models to
compose a deviation matrix (the same setting as in the original paper). For fair comparison with other
methods we set weight decay to λ = 0.01.

The performance of the SWAG method is sensitive to learning rates. To prevent spikes in loss during
training we make three changes versus MAP. Firstly, we lower the main learning rate. In practice 2e-5
is the highest rate with which we can achieve reasonable validation accuracy during training (SWAG
should be run with a constant ‘high’ learning rate). Secondly, we reduce the learning rate even further
for log noise; at all times it is one fifth of the learning rate applied to other model parameters. Thirdly,
at the start of SWAG training we gradually increase learning rates from 1e-10 up to their maxima
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over 5 epochs, using a cosine scheduler (the scheduler is not particularly important; we use a cosine
scheduler for alignment with SGLD). SWAG’s sensitivity is a result of using the SGD optimiser
as opposed to Adam (which enjoys momentum and adaptive learning rates). We try SWAG with
momentum ρ ∈ {0.5, 0.9, 0.99} but see more volatile loss profiles so momentum is kept at zero. At
test time we draw 30 samples.

C.5 SGLD

SGLD parameter updates are equivalent to MAP updates with the addition of Gaussian noise. As
with MAP, we scale the SGLD loss to a manageable order of magnitude by dividing by the training
set size, N . This division effectively rescales the SGLD learning rate to be ε/N . It follows that we
should also divide the variance of our added Langevin noise by N . Denoting the batch size as B, our
parameter update equation is:

∆ωt =
ε

2N

(
∇ log p(ωt) +

N

B

B∑
i=1

∇ log p(yi|xi, ωt)
)

+ ηt,

ηt ∼ N (0, ε/N).

We implement SGLD as an optimiser which inherits from PyTorch’s SGD base class. The SGLD
optimiser loops through parameter groups and adds two gradient terms to the already-computed log
likelihood gradients. Firstly, it adds the gradient of the log prior; we parameterise this via a weight
decay and set the weight decay to λ = 0.01 for fair comparison with other methods. Secondly, the
optimiser adds appropriately scaled Langevin noise.

The starting point for SGLD is the pre-trained MAP model. We run SGLD with a cyclical cosine
learning rate schedule, following the proposal of Zhang et al. (2019). The idea is that larger steps
discover new posterior modes during a period of exploration (effectively a burn-in phase), and that
smaller steps characterise each mode. We use PyTorch’s ‘OneCycleLR’ scheduler and configure a
single cycle as follows: we cosine anneal the learning rate from 1e-10 to a maximum learning rate
of 1e-4 over 5 epochs, and then cosine anneal from this maximum to a minimum learning rate of
1e-5 over the following 45 epochs. At all times the learning rate for log noise is one fifth of the main
learning rate. We save a posterior sample at the end of each 50 epoch cycle. Given this relatively
expensive serial sampling procedure, we collect only 20 samples for SGLD.

C.6 BBP

Again, we scale the loss to be a per example measure. Given batch size B the loss function is:

L(ω, θ) =
1

N

(
log q(ω|θ)− log p(ω)− N

B

B∑
i=1

∇ log p(yi|xi, ω)

)
.

In practice, we average this loss across 5 forward passes before every backward pass to reduce
variance.

To implement BBP, we define a Bayesian linear layer class to replace the existing linear layers in
the D-MPNN. Within the Bayesian linear layer we implement the ‘local reparameterisation trick’
(Kingma et al., 2015). This involves calculating the mean and variance of activations in closed form
and sampling activations instead of weights. With the local reparameterisation trick the variance of
our MC ELBO estimator scales as 1/B; sampling weights directly it scales (B − 1)/B (with B the
batch size). Within each Bayesian linear layer we also compute the KL divergence in closed form
using a result from Kingma and Welling (2013, Appendix B). Each layer returns standard output as
well as a KL. We sum the latter across layers to compute a total KL.

We initialise BBP from the MAP solution and train for 100 epochs at a constant learning rate of
1e-4. We set σprior = 0.05 which is approximately equivalent to a weight decay of 0.01 given our
scaled loss. Initialising ρ parameters in the correct range is important for reasonable convergence; we
initialise uniformly at random between −5.5 and −5. Each training run we save the BBP model with
the best validation accuracy, where validation accuracy is calculated for the mean of the variational
posterior. At test time we draw 30 samples.
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C.7 DUN

The DUN method is implemented on top of BBP. Our loss is the negative of equation (2) (though we
compute an exact BBP KL). As with previous methods, we rescale the loss by dividing by the training
set size. The variational categorical distribution q(d|α) is learned as a set of parameters within the
D-MPNN, where we use logs to ensure non-negativity. In a single forward pass our DUN D-MPNN
returns a BBP KL (the sum of KLs computed in closed form within Bayesian linear layers), a KL
of categorical distributions (also computed exactly) and predictions corresponding to five different
depths. Our categorical prior is the uniform distribution.

Categorical distributions are over d ∈ {1, 2, 3, 4, 5}. Note that in Chemprop the depth d counts the
number of message passing steps plus the hidden state initialisation step. We do not exceed d = 5 for
fair comparison; improved DUN performance versus other methods may otherwise be caused by the
inclusion of a deeper sub-model alone. Recall that when selecting a model architecture we only grid
search up to d = 5.

We train DUN models for 350 epochs. For the first 100, BBP ρ parameters are frozen at zero (thus our
variational posterior over weights is a point mass) and we freeze q(d|α) to be a uniform distribution.
This first phase of training is designed to minimise the chance of the variational categorical distribution
later collapsing to a single depth. For the first 100 epochs we use the ‘noam’ scheduler with MAP
learning rates. After 100 epochs we initialise ρ as in the BBP method and unfreeze our variational
categorical parameters. From 100 epochs onward we use a constant learning rate of 1e-4. We save
the DUN model achieving the best validation accuracy.

At test time we generate two sets of samples. We draw 30 samples from the marginal posterior
over weights, each of which predicts by taking an expectation w.r.t. depth; we use these samples to
evaluate DUN accuracy. We also draw 100 samples from the joint posterior over weights and depth,
using these to assess uncertainty calibration; the larger number of samples is necessary to minimise
discretisation error.

Table 2: MAE for MAP and Bayesian model ensembles. The 5 runs in Table 3 constitute an ensemble
of 5 models. Results are scaled by task such that predicting with the mean of test targets would yield
an MAE score of 100.

Property MAP GP DropR DropA SWAG SGLD BBP DUN

mu 45.64 45.43 49.10 52.17 45.47 45.41 45.13 46.35
alpha 6.70 6.68 8.20 9.22 6.49 6.56 6.39 6.90
HOMO 26.69 27.24 28.59 32.42 26.37 26.08 26.25 26.27
LUMO 9.52 9.85 10.42 11.68 9.40 9.28 9.25 9.51
gap 13.37 13.75 14.47 16.56 13.12 12.97 13.04 13.17
R2 13.52 13.51 15.50 16.55 13.45 13.41 13.34 13.99
ZPVE 1.57 1.38 3.27 3.49 1.56 1.61 1.59 1.70
Cv 5.76 5.78 7.61 8.36 5.74 5.83 5.70 5.99
U0 1.57 1.30 2.71 2.76 1.86 1.95 1.51 1.92
U 1.57 1.30 2.71 2.76 1.81 1.95 1.51 1.93
H 1.57 1.30 2.71 2.76 1.83 1.95 1.51 1.93
G 1.57 1.30 2.71 2.76 1.83 1.94 1.51 1.92
All 10.76 10.73 12.33 13.46 10.74 10.75 10.56 10.96

Mean rank 4.00 3.17 7.00 8.00 3.25 3.75 1.75 5.08
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D Granular Predictive Accuracy Results

Tables 2 and 3 present granular predictive accuracy results. MAEs are scaled by task such that
predicting with the mean of test targets would yield an MAE score of 100. The primary metric in
these tables is ‘mean rank’, calculated (per run) by averaging the rank of a method across the 12 tasks.
Using mean rank ensures we evenly weight the 12 tasks. To use MAE averaged across tasks (the ‘All’
row in the tables) would be to give a higher weighting to more difficult tasks.

Table 3: (split table). MAE for MAP and Bayesian single models. Means and standard deviations
are computed across 5 runs. Results are scaled by task such that predicting with the mean of test
targets would yield an MAE score of 100.

Property MAP GP DropR DropA

mean std mean std mean std mean std

mu 48.41 0.43 48.95 0.29 50.42 0.67 52.77 0.37
alpha 7.89 0.15 8.01 0.31 9.32 0.22 10.12 0.12
HOMO 30.06 0.27 31.13 0.40 30.76 0.29 33.38 0.40
LUMO 11.08 0.15 11.44 0.04 11.86 0.36 12.34 0.21
gap 15.35 0.11 15.87 0.12 16.07 0.25 17.24 0.38
R2 15.44 0.17 15.74 0.28 16.86 0.27 17.53 0.20
ZPVE 1.93 0.06 1.74 0.14 4.72 0.27 4.60 0.20
Cv 6.94 0.04 7.05 0.21 9.26 0.29 9.50 0.17
U0 1.88 0.09 1.55 0.19 3.58 0.15 3.76 0.10
U 1.88 0.08 1.55 0.19 3.58 0.15 3.76 0.10
H 1.88 0.08 1.55 0.19 3.58 0.15 3.76 0.10
G 1.88 0.09 1.55 0.18 3.58 0.15 3.76 0.10
All 12.05 0.05 12.18 0.14 13.63 0.15 14.37 0.16

Mean rank 4.08 0.16 3.87 0.42 7.05 0.15 7.87 0.19

Property SWAG SGLD BBP DUN

mean std mean std mean std mean std

mu 48.03 0.33 47.80 0.33 47.72 0.47 48.24 0.29
alpha 7.58 0.03 7.49 0.10 7.43 0.15 7.84 0.15
HOMO 29.49 0.25 28.93 0.32 29.12 0.25 28.64 0.17
LUMO 10.79 0.07 10.49 0.08 10.53 0.13 10.54 0.02
gap 14.98 0.08 14.63 0.10 14.68 0.08 14.59 0.22
R2 15.28 0.11 15.06 0.18 15.02 0.08 15.41 0.18
ZPVE 1.90 0.04 1.95 0.09 1.88 0.11 2.13 0.11
Cv 6.80 0.05 6.79 0.10 6.64 0.08 6.94 0.14
U0 2.04 0.20 2.30 0.22 1.76 0.08 2.42 0.21
U 2.01 0.18 2.30 0.22 1.76 0.08 2.42 0.22
H 2.02 0.19 2.30 0.22 1.76 0.09 2.42 0.22
G 2.04 0.19 2.30 0.22 1.76 0.09 2.42 0.22
All 11.91 0.07 11.86 0.13 11.67 0.09 12.00 0.06

Mean rank 3.55 0.12 3.23 0.51 1.95 0.40 4.40 0.25
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E Reliability Diagrams

Figure 3 contains a complete set of reliability diagrams. Each row (pair of diagrams) corresponds to
a different likelihood function. The first pair of diagrams are generated with Gaussian likelihoods;
Gaussian noise parameters are learned when we train the D-MPNN. We observe pathological under-
confidence across methods. The second pair of diagrams are generated with post-hoc t-distribution
likelihoods and demonstrate improved calibration. The third pair of diagrams are generated without
modelling aleatoric noise. In this case, the Bayesian predictive distribution is approximated as a single
Gaussian rather than a mixture. We fit the single Gaussian to S ×N predictive means, after drawing
S posterior samples from an ensemble of N models. The third row demonstrates that overestimated
aleatoric uncertainty drives the underconfidence in the first row. The elbow shape towards the end of
the reliability lines in the third row points to the presence of outlying residuals.
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Figure 3: Reliability diagrams for single models (left column) and model ensembles (right column).
Each row (pair of diagrams) corresponds to a different likelihood function. Each line is the average
of 5 runs.

14


	Introduction
	Model and Data
	Methods
	Experiments
	Predictive accuracy and calibration
	Molecular search

	Discussion and Future Work
	Bayesian Modelling
	Bayesian marginalisation
	Bayesian deep learning

	The Depth Uncertainty Network
	Depth uncertainty in an FFN
	Incorporating uncertainty in model weights

	Implementation of Methods
	MAP
	GP
	DropR, DropA
	SWAG
	SGLD
	BBP
	DUN

	Granular Predictive Accuracy Results
	Reliability Diagrams

