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Abstract

Selecting chemical representations for machine learning models is a challenging
task, one which is subject to trial and error. Extended connectivity fingerprints
(ECFPs), for example, are a classic featurization technique used widely in the
prediction of properties of molecules, which effectively encodes molecular sub-
structures in a bit vector. However, it is not obvious when to use vanilla ECFPs
instead of alternative featurizations. We propose using recent progress in the field of
representation learning to evaluate and improve the quality of chemical descriptors.
Specifically, we show that using the loss-data framework with surplus description
length and ε sample complexity can provide insight into which descriptors are ap-
propriate for specific tasks. We find that applying simple dimensionality reduction
techniques such as UMAP and PCA can improve the quality of ECFP descriptors
for certain datasets.

1 Introduction

Machine learning (ML) approaches have seen a recent surge in cheminformatics because of their
utility throughout different stages of the drug discovery pipeline. In particular, supervised machine
learning has shown promise for predicting molecular characteristics, such as ADMET properties and
binding affinities [11]. However, developing effective ML approaches for supervised tasks requires
not only a good model, but also a good representation, or featurization, of chemical compounds.
The quality of the featurization affects how well, and how quickly, a machine learning model can
learn from the data. Which representation to use, and when, is an open question, particularly in
small molecule design problems, where a wide variety of representations are available [15]. In this
work, we investigate the effectiveness of common, one-dimensional featurizations of molecules and
demonstrate how to assess different descriptors.

1.1 Molecular descriptors

Molecular descriptors are operations that transform a symbolic representation of a molecule into a
vectorized representation. The vectorized representations can be used as inputs to algorithms, such
as ML models, to assist in a variety of downstream tasks, including modeling quantitative structure
activity relationships (QSAR) for virtual screens [3, 7, 10].

Simple computed properties A basic class of molecular descriptors includes those constructed
using predicted physiochemical properties or experimental measurements. Popular measurements
used in these representations include molecular weight, logP, number of hydrogen bond donors,
number of hydrogen bond acceptors, polar surface area, and more. The values of interest can
be concatenated into a vector and used as a molecular representation. Models trained with such
representations may be largely invariant to the underlying molecular structures.
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Extended connectivity fingerprints Extended connectivity fingerprints (ECFPs) are one of the
most widely used molecular descriptors. ECFPs are circular fingerprints that utilize a variant of the
Morgan algorithm [13] to quantize neighborhoods around individual atoms to detect the presence of
substructures. The molecule is represented as a bit-vector where on-bits indicate the presence of a
particular substructure. ECFPs can contain varying levels of granularity, based on the number of bits
that are used [14].

ML-based descriptors ML models can be used to construct chemical descriptors by extracting the
outputs at a given layer in the model. Encoder-decoders are the canonical architecture for constructing
descriptors in this way. An encoder network compresses an input representation of a molecule into a
latent vector, from which a decoder reconstructs a molecular representation. The input and output
representation can be the same (e.g. SMILES strings [6]) or different (e.g. SMILES to InChI [17]).

1.2 Dimensionality reduction techniques

Principal component analysis (PCA) PCA [9] is a linear dimensionality reduction technique
which projects data into into a lower-dimensional space using singular value decomposition (SVD).
Principal components are ordered eigenvectors of the covariance matrix, and thus maximize the
variance of the projected data.

Uniform manifold approximation and projection (UMAP) UMAP [12] is a relatively recent
dimensionality reduction technique which claims to preserve both the local and global structure of the
data. It has received attention in bioinformatics, for example, for its utility in visualizing single-cell
data [2].

1.3 Evaluating representations

The increased interest in representation and self-supervised learning in the machine learning commu-
nity has given rise to a family of techniques for analyzing the quality of representations. Notions of
robustness for representations normally entail evaluating downstream performance on some relevant
task, using simple models that are quick to train – these models are sometimes referred to as “probes"
in the literature. Probes can be linear [1, 5] or nonlinear [4].

Nonetheless, the question of representation evaluation is complicated. A particular representation
may work reasonably well in certain data regimes, and for certain tasks, but not for others. In
Whitney et al. [16], the authors provide an overview of current state-of-the-art methods for evaluating
representations, and identify the loss-data framework as a useful analytical tool. The loss-data
curve, which plots validation loss versus training set size, elucidates how well probes can learn with
different numbers of examples. This is in contrast to a traditional loss-curve, which holds the number
of examples static. Whitney et al. [16] also propose two new, robust methods for representation
evaluation based on the loss-data curve, which we use here.

Surplus description length Surplus description length (SDL) is a measure of the extra entropy
needed to encode data from a data generating distribution D using a representation φ. On a dataset
with i points, the SDL is

mSDL(φ,D,A) =
N∑
i=1

[L(Aφ, i)− ε]+ , (1)

whereA is the probe algorithm, L is the expected loss, and ε is a success criterion, i.e. a loss tolerance
for which a model is considered successful at the task.

ε sample complexity (SC) εSC measures the smallest number of samples needed for a probe A to
achieve a loss value of ε on the dataset,

mεSC(φ,D,A) = min{n ∈ N : L(Aφ, n) ≤ ε}. (2)

Both of these methods involve selecting a loss threshold, ε, which corresponds to a line on the y-axis
of the loss-data curve (see Fig. 1a or 2a for an example). εSC measures the number of data points
needed to obtain ε loss, and SDL integrates the loss curve above ε.
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2 Experiments

We conduct an expository analysis of chemical descriptors using SDL and εSC, by considering a
subset of the MoleculeNet [18] benchmark datasets: the Tox21 and Lipophilicity datasets. For each
task in each dataset, we sample n ≤ N datapoints, where n is chosen linearly from [0, N ]. Every
sample is used to train a nonlinear probe with a 90/10 training/validation split. The probe is a simple
feed-forward neural network with 2 hidden layers of size 512 each. The validation loss at each
sampled n is used to compute SDL and εSC. We repeat the process with 4 different random seeds.
Two ε values are selected by taking 1.5x and 2.0x the lowest loss value found (lmin) for each set of
descriptors, to serve as proxies for success criteria.

The descriptors evaluated include ECFP descriptors of varying lengths: 1024, 2048, and 4096. For
each length, we also fit and apply PCA and UMAP to project the fingerprints into a space of dimension
d ∈ {2, 16, 128}. Lastly, we also evaluate Continuous Data-Driven Descriptors from Winter et al.
[17], which are 512-dimensional latent vectors from a SMILES autoencoder architecture, trained on
ZINC12 [8]. For brevity, the results shown only include ECFP descriptors of size 2048 and associated
dimensionality techniques. We observed qualitatively similar results in using ECFP descriptors of
different lengths. No dimensionality reduction techniques are applied to the CDDD descriptors.

3 Results

The loss-data framework proves useful in identifying which representations are appropriate for each
task. For the Tox21 dataset, where UMAP and PCA projections visually indicate separation between
active and inactive compounds, those representations are found to be the most expressive. Conversely,
for the Lipophilicity dataset, the transformations show no benefit over ECFP, and the ML-based
CDDD descriptors are the most expressive.

3.1 Tox21

Tox21 contains qualitative (binary classification) toxicity measurements from 12 biological targets
including nuclear receptor signaling and stress response pathways. SDL and εSC are computed using
log-loss for each descriptor. The average ranks for each type of descriptor by method are shown
in Table 1. For these Tox21 tasks, the UMAP projections are by-and-large the best representations,
followed by the PCA projections. We also note that the ML-based descriptors (CDDD) are not
objectively better than the ECFP descriptors.

Method CDDD ECFP PCA128 PCA16 PCA2 UMAP128 UMAP16 UMAP2

SDL, ε = 1.5× lmin 6.75± 1.29 6.75± 0.87 7.25± 0.62 5.25± 0.45 3.5± 1.00 2.08± 0.67 1.92± 1.08 2.50± 1.09
SDL, ε = 2.0× lmin 6.25± 2.14 6.50± 1.00 7.17± 0.72 4.92± 1.09 4.08± 1.73 2.33± 0.98 1.92± 1.08 2.83± 1.47
εSC, ε = 1.5× lmin 6.46± 0.14 6.46± 0.14 6.46± 0.14 6.46± 0.14 2.63± 1.23 2.79± 0.50 3.21± 0.58 1.54± 0.58
εSC, ε = 2.0× lmin 6.50± 0.00 6.50± 0.00 6.50± 0.00 6.50± 0.00 2.33± 0.83 2.71± 0.54 3.21± 0.58 1.75± 0.69

Table 1: Average rank for each representation, across the 12 classification tasks in Tox21.

As an illustrative example, we show the loss-data curve for the androgen receptor (NR-AR) task
in Fig. 1a, and the two-dimensional UMAP and PCA transformations (Fig. 1b and Fig. 1c). The
two-dimensional embeddings separate many of the active compounds from the inactives, reflecting
that SDL εSC have selected reasonable representations.

3.2 Lipophilicity

The Lipophilicity dataset contains regression values for experimental measurements of the oc-
tanol/water distribution coefficient (logD). We again evaluate all descriptors, using root-mean-
squared-error (RMSE) as the loss function, and plot the loss-data curve in Fig. 2a. Here, the CDDD
descriptors are the best representation, followed by ECFP. Only the high-dimensional PCA projection
is competitive with the ECFP descriptors. In this case, the two-dimensional embeddings (Fig. 2b and
Fig. 2c) are not informative, reflecting the results captured by the loss-data curve.
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(a) Loss-data curve. (b) UMAP projection. (c) PCA projection.

Figure 1: The Tox21 NR-AR task. (a) The loss-data curve shows that UMAP transformations are
found to be the best representations based on SDL and εSC, followed by PCA. (b) UMAP groups
active compounds separately from inactives. (c) PCA similarly embeds active compounds close to
one another.

(a) Loss-data curve. (b) UMAP projection. (c) PCA projection.

Figure 2: The logD task associated with the Lipophilicity dataset. (a) The loss-data curve shows that
the CDDD descriptors are the best representations based on SDL and εSC, followed by ECFP. (b)
The UMAP embedding shows no separation by experimental value. (c) The PCA embedding is also
uninformative for experimental logD.

4 Discussion

In this work, we consider the problem of evaluating arbitrary chemical descriptors using tools
from representation learning. We show the utility of the loss-data framework with SDL and εSC,
by examining ECFP descriptors, PCA and UMAP transformations, and an example of ML-based
descriptors.

The loss-data framework can also be used to understand which descriptors work well in low-data
regimes – a common problem that cheminformatics practitioners face. Further work in this domain
can also help inform which descriptors to use for different families of tasks.

Identifying which representations are useful, and when, is of practical importance. ECFPs, in
particular suffer from the curse of dimensionality; even though longer bit-vector representations are
desirable for their granularity, they are very sparse. This makes it both more difficult for machine
learning models to learn a generalized notion of chemical structure, and more computationally
intensive. Evaluating representations via probes can help identify when alternative descriptors or
computationally efficient transformations such as UMAP or PCA will be beneficial.

Introducing this type of representation evaluation as a first-step in QSAR modeling pipelines can help
reduce training time, increase interpretability, and performance.
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