Deep Molecular Dreaming:
Inverse machine learning for de-novo molecular
design with surjective representations
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1 Introduction

The de-novo design of new functional chemical compounds can bring enormous scientific and
technological advances. For this reason, researchers in cheminformatics have developed a plethora of
A.IL. methodologies for the challenging inverse molecular design task [[1]. They include deep learning
techniques such as variational autoencoders (VAE) [2, 13| 4], generative adversarial networks (GAN)
[5) 6], reinforcement learning (RL) [[7, 8], and evolutionary techniques such as genetic algorithms
(GA) [9} 10}, [11].

These methods belong to a category with one particular attribute: the model indirectly optimizes
molecules for a target property. For example, VAEs and GANSs learn to mimic a distribution of
molecules from a training set, constructing a latent space that is then scanned to find molecules that
optimize an objective function. In the case of RL, the agent learns from rewards in the environment
in order to build a policy for generating molecules, which is subsequently used to maximize an
objective function. Finally, in GAs, the population is optimized iteratively by applying mutations and
selections.

Here, we present preliminary results for PASITHEAF_-], a new generative model for molecules inspired
by inceptionism techniques [12] in computer vision. PASITHEA is a gradient-based method that
optimizes a discrete molecular structure for a target property. We train a neural network to predict
chemical properties using a molecular string representation. We then invert the training of the network
to generate new variants of molecules. This approach has two significant novelties:

e Molecules are directly optimized to a given objective function, sidestepping the learning of
distributions and policies, or the application of mutations to a population.

e We can analyse what the regression network has learned about the chemical property by
probing its inverse training with test molecules.

'"PASITHEA is the goddess of relaxation, meditation, hallucinations, and wife of Hypnos, the god of sleep.
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Figure 1: Deep dreaming is well-known for creating new dream-like images.
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Figure 2: Two-step training for PASITHEA.

Furthermore, PASITHEA does not require expensive function evaluations for quantum chemistry
calculations, provided that we use a pre-calculated dataset, since costly chemical properties can be
directly optimized.

This method is made possible by the application of SELFIES, a 100% robust molecular string
representation [13]]. In contrast to SMILES, for which a large fraction of generable strings do not
map to valid molecular graphs, SELFIES is a surjective map between molecular strings and molecular
graphs.

We train PASITHEA on a subset of QM9 to predict logP values. We then initialize the inverse training
with a molecule and optimize it for a logP value. We clearly confirm a shift in the logP distribution of
generated molecules. We can observe how the model changes a molecule quasi-continuously over
several steps to a final, optimized chemical structure. Finally, we indicate how this technique can be
used to probe concepts learned by PASITHEA.

2 Methodology

Inceptionism [[12] has drawn considerable attention as an artistic method for rendering images. By
using a neural network trained to classify an image (i.e., dog, car or house), the network can perform
deep ’dreaming’ on an image in order to mutate it gradually to fit a different class while retaining
features of the original image. For example, it may enhance animal features in the image of a
chemistry lab while the general structure of a lab is still visible (Figure 1). The rendered images have
dream-like properties that make them a popular artistic style in the media.

We generalize this methodology to the inverse-design task of functional molecules. PASITHEA uses a
fully-connected neural network consisting of four layers, each with 500 nodes, and takes as input the
one-hot encoding of the SELFIES representation of each molecular graph.

Prior to deep dreaming, the network learns to predict a specific real-valued property for each molecule
in a given dataset (i.e., logarithm of partition coefficient, or logP) from the molecular graph. The
training involves the standard feedforward and backpropagation process. For a set of fixed inputs and
outputs, the network iteratively improves its predictions by updating the weights through gradient
descent. (Figure[Zh).



In deep dreaming, an input molecule with a property value predicted by the network is incrementally
mutated to a similar molecule with the desired value. The weights and biases of each layer of the
network are now fixed; the neural network is no longer adjusting its logP prediction for each molecule,
but applying its prediction to the dreaming process. Through backpropagation, we minimize the
error between the predicted properties of each input molecule and the desired target property (Figure
[2b). The computed error is then used to compute the gradient with respect to the one-hot encoding
of the input. This effectively transforms the input gradually to a molecule that matches the target
property. Once the loss function has been minimized, the gradient evaluates approximately to zero,
which terminates the training. In this process, the same standard feedforward and backpropagation
algorithm is used, but the input molecule is adjusted while the weights and biases remain constant.

Itis an ongoing study to find the best numerical conversion from the SELFIES string into an appropriate
input for deep dreaming. We introduce noise in the one-hot encoding as input to deep dreaming as
one effective approach. Every zero in the one-hot encoding is altered to a random number between
zero and a specific upper-bound, which is typically set to a value between 0.5 and 0.9. Using this
method, we observe an incremental optimization for each given molecular input, as required.

Another important contribution to the model is the application of SELFIES. This method requires a
continuous space in which all points are valid, a criterion met by the recently developed SELFIES,
which is proven to be 100 % valid [[13]]. Our findings here highlight only one of the many potential
applications of SELFIES.

3 Results

Our experiments clearly indicate that deep dreaming achieves both a direct, gradient-based design
of novel functional molecules and the explainability of neural networks for molecules. We did not
require an exhaustive search for the ideal training hyperparameters. In this analysis, PASITHEA
is trained to predict the logarithm of partition coefficient (logP), obtained from the RDKit library
[14], on a set of 10,000 molecules randomly selected from the QM9 dataset. We demonstrate how
PASITHEA transforms molecules in a stepwise, quasi-continuous fashion and shifts the distribution
of logP in the molecular dataset toward set targets. We then analyse what PASITHEA has learned
regarding the relationship between logP and molecular structure.

3.1 Evolution of individual molecules

Of particular interest is the gradual progression of each molecule through inverse training. Over
hundreds of training epochs, the gradient with respect to input SELFIES produces minor adjustments
in the molecule that increments to a pronounced transmutation (Figure[3). The behaviour of these
adjustments are stepwise due to the discrete, textual nature of the molecules represented by strings,
but continuous in terms of real-valued one-hot encodings.
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Figure 3: Stepwise molecule transformations, optimized for a higher and lower target logP.
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Figure 4: Shifts in distribution.
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Figure 5: Graphical and SMILES representation of nitrogen and fluorine appendages, with corre-
sponding logP.

3.2 Shift in distribution

In order to observe a large-scale pattern over the entire dataset, we disregard the intermediate
molecules and restrict our analysis to the initial and fully optimized molecules. From these results,
there is a clear shift in the distribution of logP values in the set of molecules as they transmute toward
a given target value (Figure d). Although the training learning rates have little effect on the quality
of training, the addition of more noise to one-hot encoded inputs (higher upper-bound values in
Figure[) has a large influence on the shifts in distribution curves. We furthermore observe from these
distribution shifts in Figure @ that there are some molecules generated with logP values exceeding the
lowest and highest values in the original dataset. For instance, notice that in Figure @, the left tail
of the left-shifted (green) distribution extends beyond the left tail of the original (red) distribution
and the right tail of the right-shifted (blue) distribution extends beyond the right tail of the original
distribution. Demonstrably, Pasithea is generating novel molecules with properties outside the limits
of the original training set of molecules, which attests to the large potential of this method.

3.3 Probing the neural network’s intuitions

Inspired by explainable representations in image recognition [[15] and rediscovery of concepts in
physics [16], we can understand the internal molecular representation by inverting it. For that, we
probe the neural network with specific test molecules and observe patterns in how it changes them.
For example, the composition of atoms after inverse training follows a predictable pattern, such as the
appendage of a few non-carbon atoms, fluorine and nitrogen. Take, for example, the transmutations of
the simplest molecules in the QM9 dataset (Figure 3)), which suggest that PASITHEA interprets these
non-carbon atoms as correlated with lower logP values. A similar trend persists for more complex
molecules, in which more than one atom may be replaced with nitrogen (Figure [3h), though this
persists to a lower extent for fluorine.

The intermediate states during continuous transformation can be used as additional insights into the
network’s understanding of chemical property. In particular, by observing a single test molecule,
there are instances where an additional iteration in inverse-training transforms the molecule with a
repeated ’strategy’ that has been used in previous iterations. The neural network appears to persist
with a single strategy until the training terminates. We demonstrate this behaviour in Figure [3p,
which shows a gradual process of reducing length, and in Figure [3p, which shows an initial molecule
containing a single nitrogen atom, an intermediate molecule containing two nitrogen atoms, and a
final molecule containing three nitrogen atoms. These cases validate that the network is charting



deliberate, non-arbitrary paths toward the target logP; it has a non-trivial understanding of features
corresponding to higher and lower logP values.

4 Outlook

In the immediate future, we will verify our results on larger datasets and more complex molecules,
such as PubChem. Furthermore, we plan to test PASITHEA on molecular properties that require
expensive quantum chemistry calculations. We see much potential in discovering other ’strategies’
the network may use in order to optimize molecules with different properties.
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