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Abstract

Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal
ions and organic linkers. MOFs play an important role in industrial applications
such as gas separation, gas purification, and electrolytic catalysis. Important MOF
properties such a potential energy are currently computed via techniques such as
density functional theory (DFT). Although DFT provides accurate results, it is
computationally costly. We propose a machine learning approach for estimating
the potential energy of candidate MOFs, decomposing it into separate pair-wise
atomic interactions using a graph neural network. Such a technique will allow
high-throughput screening of candidates MOFs. We also generate a database of
50,000 spatial configurations and high quality potential energy values using DFT.

1 Introduction

Metal-organic frameworks (MOFs) are a class of crystalline nanoporous materials composed of
metal ions connected with organic ligands [19]. Due to the flexibility of combining hundreds of
organic ligands with tens of metal ions in thousands of network geometries, the configuration space
of possible MOFs is massive [9]. The large configuration space, highly tunable crystal structures, and
nanometer sized pores make MOFs very promising for a variety of applications. Possible uses of
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MOFs include hydrogen storage, drug delivery systems, gas purification, and electrolytic catalysis
[12]. Designing MOFs with desirable structural properties is a multi-billion-dollar challenge.

The mechanical properties of MOFs can be tuned to produce desirable characteristics, so rapidly
quantifying the properties is a key stage of any specific application. In principle, we can calculate
properties for any materials or molecules using atomistic simulations [25]. In practice, the com-
putational complexity increases O(N3) [23] as a function of system size, and due to the hundreds
to thousands of atoms in a MOF’s unit cell, significant approximations are necessary to make the
simulations on hundreds of thousands of configurations feasible.

One fundamental calculation needed to design MOFs for many applications is the potential energy of
a given configuration of a MOF. For example, it can be used to compute the mechanical stability of
the MOF. Currently, we must use costly DFT-based calculations[17] to obtain the potential energy
for a single atom configuration but a data-driven approach could speed up the calculations and still
infer meaningful structure-property relationships [7]. Such an approach could extract the underlying
force-fields[15] that govern the potential energy across the entire MOF configuration space. It can
significantly enhance and alter the current computational techniques used to understand molecules
and matter.

Recent advances in deep learning, especially graph neural networks, for materials science have
enabled data-driven research on raw molecular data. We propose a graph convolution network with
the graph representations of MOFs for interpretable predictions of MOF potential energies. The
graph neural network (GNN) model approximates the potential energy function of the crystal as
a neural-network series expansion. We use DFT calculations as ground truth and create a labeled
dataset for 50k structural configurations.

2 Related Work

Real-world data from chemistry, biology, and social sciences, are not easily represented with grid-
like structures like images. Social networks, protein complexes, and molecules have a natural
representation in graphs that capture the translational, rotational, and permutation symmetries present
in the data. Using machine learning to learn atomic potential is a promising field of study for
molecular dynamics and [1]. Multilayer perceptrons (MLP) with atomic centered radial and angular
functions have been used to learn potential energy surfaces [2]. More specifically various ML methods
have been applied to predict and study MOFs as well. Borboudaki et al. used an autoML tool Just
Add Data [26] to predict adsorption values of a small dataset of MOFs with 92 hand selected features
[4]. He at al. [16] identified 45 common structural features between inorganic materials and MOFs.
They pretrained a set of machine learning models including linear regression, SVM, random forest
and MLPs on in-organic molecules and used transfer learning to classify the conductivity of MOFs.
Unlike these works, we present a truly deep learning enabled scheme that predicts potential energies
without the aid of domain specific features. We use a GNN to produce perform end to end regression
from raw positional information to potential energy prediction.

The field of geometric deep learning focuses on applying deep learning to non-euclidean domains
such as graphs and manifolds [5]. Graph based message-passing neural networks, have enabled
machine learning on different domains, especially quantum chemistry. Gilmer et al. developed a set
of message passing networks to achieve high accuracy in predicting chemical properties of organic
molecules [14]. Simonovksy and Komodakis extended graph neural networks to condition the graph
convolution filters to condition on both node features and edge features for graph classification tasks
[24]. Xie and Grossman utilized graph convolutional networks to learn the properties of crystal
structures. The CGNN is able to extract representations of crystal structures that are optimum for
predicting targets calculated using DFT. Our work builds on the edge-conditioned graph convolutional
networks with a modified convolution kernel.
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3 Model

For a MOF molecule with N atoms, we wish to derive or identify a candidate potential function U .
We wish to represent the potential of the entire molecule as a combination of arbitrary functions of
neighboring nodes and their distances. Thus we have,

U =

N∑
i

∑
j∈Ni

gi,j(r(i, j)) (1)

Where Ni are the neighbors of atom i. In our case, neighbor could be described as a bonded atom
and r(i,j) is the distance between atoms i and j. Here we make the assumption that the each atom-pair,
i, j has a separate function gi,j .

3.1 GNN architecture

The target of our model is the set of functions gi,j(r(i, j)). We represent the crystal structures using
graphs, such that each atom is represented by a node, and the edge represents the distance betweens
the two atoms. We further assume that the bonds are not double counted. We can ensure that in a
graphical representation by using directed edges and ensuring in edge list E , we impose the condition:
eij ∈ E → eji /∈ E .

We begin with a dataset of Graphs Gi, and potential targets yi. For a graph Gi we have a set of nodes
or atoms xn, and an edge list Ei. We can therefore define a neighborhood for each node Nxn

, where
the edges enj = r(n, j).

We define a graph convolution operator, MOFGCN, similar to edge-conditioned convolutions de-
scribed in [14, 27, 24], such that.

xt+1
n =

∑
Xm∈Nxt

n

h((xtn + xt)⊕ en,m) (2)

Here we set h denotes a neural network, and ⊕ is the concatenation operator. One-hot encoding the
node-features effectively allows the neural network to learn multiples functions. Our encoding allows
us to have the same inputs for the same atomic interactions, therefore sharing the same weights across
all similar atom pairs throughout the graph.

We then define a global pooling operation on the final representation of the nodes, xn. we define a
sum over all the nodes in a graph, and also a graph attention based pooling, as seen in [18].

ypred =
∑
n

xln ypred =
∑
n

σ(h(xln)) · j(xln) (3)

where σ is the softmax operator, and h and j are feed forward networks.

For a given graph Gi, we can have a objective function that minimizes the distance between the target
yi and the pooled quantity Ri. For the dataset we minimize the loss,

L =
1

N

∑
i

||yi − ypredi ||2 (4)

We can see that if we minimize the Eq. 4, we are able to retrieve neural network approximations of
the functions, gi,j(i, j, r(i, j)) , from eq. 1. We use PyTorch and PyTorch Geometric to create and
train the model [11, 20].
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Figure 1: Schematic of Graph Neural Network combining Node and edge features. The convolutions
on a 3 node graph with subsequent feature aggregation is shown. The convolution kernel operates
on neighboring nodes with a neural network shared for all node-pairs. The SUM reduction of node
features is shown.

4 Experiments and Results

4.1 Proof-of-Concept

We first sought to demonstrate that our approach could find a decomposition of known functions.
We generate 10,000 three node graphs, with three distinct node types. The nodes are spaced apart
by a random distance. The "energy" is for each node-pair is calculated with Gaussian probability
functions with µ = [0.6, 0.05, 0.3] and σ = [0.1, 0.01, 0.02]. The graph target is a sum of the three
"energies". We train the MOFGCN model to predict the graph-level target, and approximate the
node-pair functions as seen in Fig. 2a.

4.2 MOF Dataset

This dataset is constructed using Quantum Espresso [13], an ab initio software for electronic structure
and energy calculations. We used the FIGXAU from the CoRE MOF database [8]. We performed the
structural optimization with the PWscf package [10]. We found the ground state configuration using
the Kjpaw [3] pseudopotentials and the Perdew-Burke-Ernzerhof(PBE) [21] exchange-correlation
functional. From this ground state configuration, random fluctuations were introduced by allowing
each atom to randomly move any rational number between ±5(Å) either on its x,y or z axis. 47,617
new atomic configurations were generated and a Self-Consistent Field Calculation (SCF) was done
for each one.

We define the usual 80-20 random split of the data for training and testing sets. We train the MOFGCN
model with an attention based reduction to predict the potential energy. Each sample of the MOF is
represented as a graph with the nodes being the atoms and the edge feature being the inter-atomic
distance. We achieve results comparable results to DFT in the test set (Fig. 2b) and are also able to
estimate atomic interactions as seen in Fig. 2c.

5 Conclusion and Future Work

The MOFGCN model learns effective functions that governs the potential energy of the MOF.
The model achieves comparable accuracies to DFT at a fraction of the computation costs. The
MOFGCN graph kernel produces an interpretable intermediate representation of the molecular graph
inputs. We utilize the flexibility of neural networks to approximate arbitrary smooth functions to
decompose complex interactions in a crystal lattice.We plan on further extending our dataset with
larger MOFs and expanding the number of atom-atom interactions learned by our model and enable
rapid characterizations of MOFs.
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(a) The NN is only trained with the real-combined targets, and, predicts the graph-level target value. We are able
to extract the predicted functions from the NN. It’s important approximations are only correct up to an additive

constant.

(b) Histogram of test errors. Most
predictions are within 10 Ry of the

DFT calculated energies.

(c) Approximate interactions functions learned by the graph filter. Filter
outputs are combined to predict the potential function.

Automatic discovery of scientific laws and principles using data-driven machine learning is a poten-
tially transformational development in science. [28, 6, 22]. Our preliminary work here demonstrates
that decomposition of the potential energy into the sum of functions is possible. Our future work will
seek to demonstrate that these functions also have a physical, scientific significance.

The model architecture, pre-trained model, and complete dataset is available at www.github.com/
szaman19/MOFGCN
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