
Towards explainable message passing networks for
predicting carbon dioxide adsorption in

metal-organic frameworks

Ali Raza∗1, Faaiq Waqar 1, Arni Sturluson 2, Cory Simon † 2 and Xiaoli Fern ‡ 1

1School of Electrical Engineering and Computer Science, Oregon State University
2School of Chemical, Biological, and Environmental Engineering, Oregon State University

Abstract

Metal-organic framework (MOFs) are nanoporous materials that could be used
to capture carbon dioxide from the exhaust gas of fossil fuel power plants to
mitigate climate change. In this work, we design and train a message passing
neural network (MPNN) to predict simulated CO2 adsorption in MOFs. Towards
providing insights into what substructures of the MOFs are important for the
prediction, we introduce a soft attention mechanism into the readout function
that quantifies the contributions of the node representations towards the graph
representations. We investigate different mechanisms for sparse attention to ensure
only the most relevant substructures are identified.

1 Introduction

Anthropogenic carbon dioxide (CO2) emissions are a major contributor to climate change and ocean
acidification [1]. Carbon dioxide capture and storage [2] is among a concerted portfolio of approaches
[3] to stabilize and eventually reduce our CO2 emissions. In post-combustion carbon capture, CO2 is
separated from the combustion exhaust gas of fossil fuel power plants, at the point of emission, and
then geologically sequestered [1]. Metal-organic frameworks (MOFs) [4] are nano-porous, crystalline
materials that can selectively adsorb CO2 [5, 6] and therefore could be used to capture CO2 from the
flue gas of fossil fuel power plants [7].

MOFs are acclaimed as “designer materials” [8] because the chemistry of the internal surface of the
MOF can be (computationally) designed to target the adsorption of CO2 [9]. MOFs are synthesized
modularly, by linking organic molecules to metals/metal clusters to form an extended network.
Due to the abundance of molecular building blocks and their post-synthetic modifiability, the space
of MOFs is vast. Molecular models and simulations [10, 11] and machine learning [12, 13, 14]
play an important role in navigating this vast space of MOFs to find a suitable/optimal MOF for
energy-efficient CO2 capture and release [15].

Here, we design and train a message passing neural network (MPNN) [16, 17] to predict the
(simulated) amount of CO2 adsorption in MOFs. As opposed to the traditional machine learning
approach of human-engineering a feature vector to represent the structure of the MOF [18, 19, 20, 21,
22], the MPNN directly takes a graph representation of the MOF structure as input and automatically
learns a vector representation of the MOF to use for the prediction task, in an end-to-end manner.
This is achieved by iteratively passing information between neighboring nodes to learn hidden
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Figure 1: The architecture of our message passing neural network (MPNN).

representations of the local bonding environments within the MOFs, then, through a readout function,
aggregating the local node representations into a graph representation used for the prediction task.
In a step towards explaining the predictions of the MPNN by identifying important substructures
in the graph, we incorporated an attention mechanism in the readout function of the MPNN that
quantifies the contribution of each node’s representation to the graph representation. Explainability
is advantageous because it (i) can elucidate design rules and chemical intuition for synthesizing
MOFs with desirable adsorption properties and (ii) build appropriate trust/skepticism of particular
predictions based on the explanation.

MPNNs [16, 17] have been used to predict the properties of molecules and materials [23, 24, 25, 17,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35], as well as to generate molecules and materials with desired
properties [36, 37]. There has been limited efforts in interpreting/explaining MPNNs or graph neural
networks (GNNs) in general [29, 38, 39, 40, 41, 42].

2 Proposed framework

2.1 Problem overview

We aim to predict the equilibrium CO2 adsorption in a MOF at a given temperature and pressure,
a ∈ R+ [mmol/g]. Each MOF structure is represented as an undirected, node-labeled graph
G = (V, E ,X), where V is the set of n = |V| nodes or vertices, representing atoms, E is the set of
edges, representing bonds, and X ∈ Rd×n is the node feature matrix, whose columns are one-hot
encodings of the chemical elements of the atoms (d possible elements). In a supervised manner, we
aim to learn a function that maps a MOF to its predicted CO2 adsorption: f : G 7→ f(G) = a.

2.2 Converting a MOF crystal structure to a graph

We constructed the node-labeled graph G representing each MOF from its unit cell, the list of atoms
in the unit cell, and the crystallographic coordinates of those atoms. A bijection exists between the
nodes V and the atoms comprising the unit cell of the MOF. Two atoms are assigned an edge (bond)
iff, as in Refs. [34, 43, 44], (i) they are less than a distance r apart, with r the sum of their covalent
radii [45] (some metals modified) plus a 0.25 Å tolerance, and (ii) they share a Voronoi face in a
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Voronoi diagram of the surrounding atoms. We used periodic distance in our calculations to include
bonds across the periodic boundary of the unit cell.

2.3 Message passing neural network that represents f

Fig. 1 shows the architecture of our message passing neural network (MPNN) that includes an
attention mechanism to construct the graph representation from the set of node representations.

Message passing. First, our MPNN operates on nodes and learns a vector representation of the
local bonding environment of each node in the graph. This is achieved by a chemical element
embedding followed by iterations of message passing.

The chemical element embedding layer maps the one-hot encoding of the chemical element of the
node to a low-dimensional, dense representation:

xe
v = sigmoid.(Θexv), (1)

where xv is column v of X and Θe is a r × d learned matrix, with r < d.

Message passing is then used to learn a representation of each node encapsulating information about
its local bonding environment. Let h

(t)
v ∈ Rk be the hidden representation of node v at time step t,

with k ≥ r, initialized with the element embedding xe
v padded with zeros. In each time step, every

node receives information from its neighbors and updates its hidden representation accordingly, from
an aggregated message, using a gated graph neural network (GGNN) [46]. The aggregated message
received by node v is:

m(t+1)
v = Θm

∑
u∈N (v)

h(t)
u (2)

where Θm is a learned k×k matrix shared across all nodes andN (v) is the set of nodes that share an
edge with node v. A Gated Recurrent Unit (GRU) (shared across all nodes) then updates the hidden
representation of node v:

h(t+1)
v = GRU(h(t)

v ,m(t+1)
v ). (3)

We conduct T time steps of message passing, after which h
(T )
v contains information about the

bonding environment of node v within a graph-distance of T .

Readout and prediction. A readout function [47] maps the set of hidden node representations to a
fixed-size vector representation of the entire graph. We use a soft attention mechanism [46] where
the attention of node v, αv , is computed from the hidden features via a softmax:

αv =
eθ

ᵀ
sh

(T )
v∑n

u=1 e
θᵀ
sh

(T )
u

(4)

where θs ∈ Rk is a learned vector shared across all nodes. To introduce sparsity, we also try (1) the
quasi-norm L(0.5) regularization of the attention scores and (2) sparsemax [48] in place of softmax.
The attention score of node v then determines the contribution of its hidden representation h

(T )
v to

the representation of the graph, r:

r =

n∑
v=1

αvh
(T )
v . (5)

Finally, a neural network predicts the CO2 adsorption (â) from the graph representation:

â = softplus (θᵀ
a (sigmoid. (Θar))) (6)

where Θa is a learned z × k matrix and θa ∈ Rz is a learned vector. The softplus ensures a > 0.

3 Results

As train, test, and validation data, we use simulated CO2 uptake at 298 K and 0.15 bar from Ref. [49],
taken from the Materials Cloud [50], in 6 103 computation-ready, experimental MOF structures [51].
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mean (std)

Method MAD MSE ρr Entropy (sparsity)
MPNN (softmax) 0.616 (0.03) 0.868 (0.10) 0.764 (0.02) 0.78 (0%)
MPNN (sparsemax) 0.666 (0.04) 1.000 (0.11) 0.732 (0.02) 0.45 (94%)
MPNN (L0.5, λ = 0.001) 0.645 (0.02) 0.933 (0.08) 0.743 (0.01) 0.72 (0%)
MPNN (L0.5, λ = 0.05) 0.737 (0.04) 0.1.174 (0.13) 0.684 (0.04) 0.32 (0%)

Table 1: Prediction performance and attention sparsity by different methods. Mean and standard
deviation (std) over 10 folds.

We use the mean absolute deviation (MAD) loss function ` = 1
M

∑M
m=1 ||âm − am||1 to train our

network within K = 10-fold cross validation, where M is the total number of MOFs, âm is the
predicted CO2 adsorption of MOF m predicted by the MPNN by eqn. 5, am is the simulated CO2

adsorption (treated as ground truth) and || · ||1 is the L1 norm. Through hyperparameter exploration,
we settled on r = 10, k = 70, and T = 4. Tab. 1 summarizes the performance of our model
using the mean absolute deviation (MAD), mean square error (MSE), Spearman’s rank correlation
coefficient, ρr, and normalized entropy of the attentions (1 for uniform attention across all nodes
and 0 for all attention concentrating on one node). Vanilla softmax is able to achieve the best
MAD performance. Fig. 2a shows a parity plot, using softmax, for the test MOFs during the cross-
validation procedure. Sparsemax introduced substantial sparsity in the attention scores (%94 of the
attention scores are zero); however, there is no way to control the sparsity. Using Quasi-norm L(0.5)
regularisation produces a less uniform attention distribution, but with a price of slightly higher MAD.
The regularization parameter, λ, enables us to trade-off training set accuracy with sparsity. Smaller
entropy (λ = 0.001 to 0.05) results in less accuracy (MAD = 0.645 to 0.737).

4 Discussion: towards explainability

We include the attention score αv as a step towards an MPNN with explainable predictions. If αv is
large, the hidden representation of node v had a significant contribution to the graph representation r
used to predict adsorption, a. Fig. 2c visualizes the attention of each node in a MOF as an example.
The local bonding environments of the darker atoms contributed more to the final graph representation
used for the prediction task than the lighter atoms.

(a)
(b) (c)

Figure 2: (a) Parity plot for the MPNN (softmax), showing the MPNN-predicted vs. simulated CO2

adsorption, including every MOF in the data set when it served as a test MOF in cross validation.
Diagonal line shows equality. (b, c) Visualization of MOF IRMOF-1, where color indicates (b) the
identity of the atom and (c) the attention score αv on the atom using the MPNN (softmax). Black
boxes = unit cell.

Our inspection of the attention scores across different MOFs did not yield any clear insight or
chemically meaningful patterns. This leads us to believe that the attention score is not as meaningful
as we have hoped for identifying important substructures. we further believe this is due to (i) h

(T )
v

of node v is enriched with information from all nodes within T steps from node v via message
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passing; (ii) neighboring nodes tend to have strong similarity; and (iii) the attention scores do not
necessarily reflect the importance of node v for the predicted adsorption [52]. Therefore, we are
currently working to redesign the MPNN to short-circuit message passing, isolate the individual
contributions of the nodes, and rigorously lend more explainability of the prediction.
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