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Abstract

De novo drug design has shown promise for generating molecules achieving
high binding affinity. In the generation process, binding affinity of a molecule is
typically approximated using a machine learning model trained on experimental
data. We investigate how well the generated molecules are scored by docking,
a popular computational method for assessing binding activity. We observe that
optimizing for these proxies can produce poor binders, molecules that achieve poor
docking scores or do not dock altogether. We make a simple recommendation for
practitioners to include in the search process a machine learning based proxy that
approximates the docking score. We demonstrate in-silico on the task of finding
binders for the BACE receptors that it leads to more realistic molecules that achieve
realistic docking scores within the range observed in the training set.

1 Introduction

De novo drug design is a computational method for generating novel compound structures from
scratch [12]. These methods hold promise for tapping into the vast unexplored space of drug-like
molecules. Typically, the generation process involves maximizing a predefined scoring function. This
scoring function can include a number of factors such as toxicity or druglikeness.

We turn our attention to the goal-oriented de novo design in which the generation process is aimed at
finding binding molecules. In this case, the binding affinity is usually approximated by a machine
learning model [8, 13, 9].

Guiding the search process using the output of a machine learning model has been shown to fail to
generate meaningful samples in de novo models [11]. Specifically, the authors of [11] show that
highly binding molecules according to a given model, are not highly binding according to the same
model but trained on a different subset from the same dataset. In a similar spirit, [2] show that
generally common de novo models fail to generate compounds with high docking scores, when
optimized using a proxy for docking score.

We further investigate docking, a popular computational method for assessing ligand binding [7,
5]. Concretely, we use a popular open-source docking software SMINA [5]. Adding to recent
investigations [11, 2], we show that de novo models that optimize for a proxy of ligand activity
produce compounds that exhibit substantially lower docking scores than observed in the training
dataset.

Our main contribution is to make a simple recommendation to practitioners to include docking
score in the de novo optimization function. We leverage recent work that shows that outputs of
docking programs can be reasonably well approximated using a deep neural network [4, 3]. This
enables predicting docking scores rapidly, which makes it practical for use in de novo search. In
a preeliminary in-silico study on the task of finding binders to the BACE receptors, we find that
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Figure 1: Best compounds sampled by the models trained to optimise (a) docking score, (b) pIC50,
or (c) both. As the reward, RF predictions with QED correction were used. Below each compound,
its docking score and predicted pIC50 is shown.

adding such a scoring proxy to de novo models substantially improves the docking scores without
compromising predicted pIC50 scores.

2 Experiments

Recent work has shown that de novo models, when applied to generating active binders, tend to
produce unrealistic molecules [11]. Adding to these results, we investigate here, and propose ways to
improve, the docking score of molecules generated by a state-of-the-art de novo model.

2.1 Experimental setup.

We search in-silico for molecules inhibiting the BACE-1 enzyme. The experimental data consists
of 1513 molecules with activity towards β-secretase 1. We use pIC50 values to train a regression
model pθ(x) to predict inhibition and next apply REINVENT, a state-of-the-art model for de novo
drug design, to generate compounds de novo that have low IC50. As the reward we use:

RDS = exp(p̂θ(x)). (1)

In experiments involving docking, we use SMINA docking software [5], due to its popularity and
being freely available. We further choose Vinardo docking score over the default docking scoring
function in SMINA [10]. We train another regression model qξ(x) to predict Vinardo docking score
and use this model to as an additional objective in de novo experiments. Finally, we also consider
using both predictive models and optimise two targets with REINVENT. The joint reward is defined
as follows:

RBoth = exp(p̂θ(x)− q̂ξ(x)). (2)

We use two models to predict IC50 or docking score. The first model is Random Forest (RF) that
uses ECFP features, and the second model is Molecule Attention Transformer (MAT) [6] which is a
deep neural network working directly on molecular graphs. A random search of 50 hyperparameter
sets was run to choose the best performing model, and then models were retrained on the full data
using the chosen hyperparameters. We used a scaffold split to construct the validation subset.

QED correction. We observed that optimising either docking score or pIC50 may lead to generating
big unrealistic compounds with repeated substructures, see Figure 3 in the Appendix. These structures
may correlate well with the predicted target in the dataset, but are not likely to be good drug candidates
even if they achieve high docking scores. To assess the druglikeness of a compound, a numeric score
such as QED [1] can be used. QED is also shown in the aforementioned figure where it indicates
low druglikeness of the proposals. To address the issue of producing non-druglike compounds, we
multiply the reward by QED, which is a value between 0 and 1. The use of this measure imposes
additional conditions on the generated structures, making them more compact and less repetitive.
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2.2 Results

Generated molecules with high predicted binding affinity and/or high docking score to the BACE-
1 enzyme are presented in Table 1. We first observe that optimizing just for affinity based on
experimental data (pIC50) results in molecules that have low docking scores relatively to the training
set. The average docking score in the training set is -9.13. In comparison, the average docking score
for MAT/RF is -6.94/-7.77 without QED correction and -7.63/-8.78 with QED correction. They also
often generate compounds that do not dock at all.

Adding docking score as an additional optimization target substantially improves the mean docking
score, while still achieving high pIC50 scores. We observe the average docking score increases for
MAT/RF to -7.47/-8.82 without QED correction, and -8.26/-9.16 with QED correction. Importantly,
the predicted pIC50 score is comparable between using or not docking score proxy.

We also investigate the diversity of the proposed compound libraries. We compute diversity as
D = 1− 2

N(N−1)

∑N
i=1

∑i−1
j=1 s(ci, cj), where N is the number of compounds in the library, ci is

the i-th compound, and s is the Tanimoto similarity between compounds. We observe that RF creates
less diverse drug proposals, collapsing into a narrow spectrum of compounds. With regard to the
MAT results, its compounds are only slightly less diverse than originally in the dataset or in a random
sample from the ChEMBL database.

Table 1: Results of the search for drug-like molecules binding to BACE-1. Each row corresponds
to 256 generated molecules optimised towards the given target. The DS column shows the mean
docking score and the average score of top 5% molecules. Analogically, the pIC50 column shows the
mean pIC50 value and averaged top 5% values predicted by the corresponding base model.

(a) Results for search with QED correction.

Base model Target DS pIC50 Undocked Diversity

MAT
DS -7.91 -9.23 5.05 5.15 1 0.74

pIC50 -6.94 -7.21 6.60 7.64 6 0.82
Both -7.47 -8.49 5.49 6.92 1 0.70

RF
DS -8.58 -10.06 5.52 5.75 3 0.57

pIC50 -7.77 -8.01 7.39 7.51 1 0.41
Both -8.82 -9.28 7.32 7.50 56 0.42

(b) Results for search without QED correction.

Base model Target DS pIC50 undocked diversity

MAT
DS -9.21 -11.00 5.05 5.68 23 0.73

pIC50 -7.63 -8.22 6.33 7.77 14 0.85
Both -8.26 -10.33 6.45 7.32 10 0.79

RF
DS -9.32 -10.82 6.55 6.41 3 0.37

pIC50 -8.78 -8.81 7.05 7.36 113 0.35
Both -9.16 -10.15 7.43 7.46 9 0.34

(c) Statistics of the molecules sampled from the prior model and experimental values in the dataset.

Base model Target DS pIC50 undocked diversity

ChEMBL prior - -8.16 -10.16 - - 15 0.87
Dataset - -9.31 -11.30 6.52 7.25 - 0.82

The docking score distributions of the generated libraries, comparing to the dataset docking scores,
are shown in Figure 2. Libraries optimised for the pIC50 clearly lose their ability to dock well since
the distribution for this target is shifted towards higher values comparing to the dataset distribution.
On the other hand, libraries optimised for both docking score and pIC50 maintain relatively low
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Figure 2: Distribution of the docking scores of generated compound libraries. The Vinardo docking
score values for each model and each optimisation target are compared with the distribution of
docking scores in the dataset. Plots show libraries (a) with QED correction and (b) without QED
correction.

docking scores. This indicates that including docking score as a proxy task for predicting binding
affinity preserves desirable ligand-protein interactions without impairing the pIC50 optimisation.

Finally, Figure 1 shows four best compounds for each target with the base model being RF and QED
correction in the reward function. The problem with big repetitive structures was overcome while
maintaining the novelty of the generated molecules – all compounds in Figure 1 have the Tanimoto
distance to the training set greater than 0.6.

On the whole, we observe that adding docking proxy (’Both’ in Table 1) improves docking score of
the generated molecules with small or none negative impact on predicted pIC50 and the diversity of
the sample. Hence, we using proxy for docking score as a practical and simple addition for de novo
drug discovery.

3 Conclusions

Recent studies have shown limitations of current incarnation of de novo drug design for generating
active binders [11, 2]. Adding to these studies, we investigated the docking score of molecules
generated by REINVENT, a popular method for de novo drug design.

We found that optimizing for a proxy of experimental affinity (as in [8, 13, 9]) often results in
unrealistic molecules attaining a poor docking score (compared to molecules in ChEMBL) or even
failing to dock. As the main contribution, we proposed to add as an objective a computationally
cheap proxy predicting the docking score (based on [4, 3]) which, as we show, constrains the search
to more realistic molecules in terms of attained docking scores.
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A Additional experimental results

In Figure 3 we show QED for molecules generated without including QED as a n optimization target.
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Figure 3: Exemplary compounds sampled with two predictive models (MAT and RF) and two
optimisation targets (DS and pIC50) without QED correction. The druglikeness score is shown below
each molecule.

B Docking poses

Figure 4 depicts docking poses of the generated compounds inside the binding pocket of BACE-1. It
should be noted that the compound without QED correction failed to dock inside the binding pocket,
but it rather binds to the protein surface.

(a) DS (b) pIC50

(c) Both (d) w/o QED

Figure 4: Docking poses of the proposed compounds; (a-c) show the best compounds optimised with
models predicting docking score, pIC50, and both targets; (d) shows one compound without QED
correction.
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