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Abstract

A crucial step in nanoparticle synthesis is to verify whether the synthesized par-
ticles are of the desired shapes and sizes, since the morphology of nanoparticles
largely determines their function. Currently, such verification depends on complex
analytical measurements, such as transition electron microscopy (TEM).
With machine learning, we can infer the shapes and sizes of nanoparticles from
simpler, cheaper emissivity spectra measurements. Physically, a particle’s mor-
phology determines its optical properties, which are reflected in the emissivity
spectra. Based on physical simulation data, we learn inverse models to identify
nanoparticle geometry from emissivity. We find that a ResNet-based convolutional
neural network performs well on shape classification (85.9% accuracy), while both
random forest and ResNet are comparable for size regression (0.91 correlation).
Our models also discover scientific insights on which wavelengths are distinct to
different nanoparticle shapes and sizes.

1 Introduction

Nanoscale materials find applications in diverse areas, from conversion of light into electricity
in solar cells to the visualization of cancer cells. Nanoparticles are broadly defined as particles
that have dimensions in the nanometer range. We focus on these three materials in this study:
Gold (Au), silicone dioxide (SiO2), and silicon nitride (SiN), which have many applications as
nanoparticles. Due to their stability and low toxicity [1], gold nanoparticles are desirable for drug
delivery, biological imaging, and solar cells. SiO2 and SiN nanoparticles also have many applications
to solar technology [2, 3].

In most nanoparticle applications it is crucial to synthesize nanoparticles of the specified sizes and
shapes, often to the nanometer level precision. Usually, researchers turn to more complicated and
time consuming methods, such as transition electron microscopy (TEM), to attain this level of detail.

We seek a simpler approach to verify particle shapes and sizes in nanoparticle synthesis, by leveraging
machine learning to extract size and shape information from emissivity spectra. The emissivity
spectra are simpler to obtain experimentally than direct analytical TEM measurements. The spectra
represent a particle’s emissivity at different wavelengths, which are highly dependent on the chemical
composition, size, and shape of nanoparticles [4]. This clear connection between a particle’s
emissivity and its geometry makes emissivity a good candidate for building models to automate the
analysis of sizes and shapes in nanoparticle samples.

While particle emissivity can be simulated by numerically solving Maxwell’s Equations [5], there
is no simple known rule for determining the sizes, shapes, and materials of nanoparticles from a
sample’s emissivity spectrum. Therefore, we use numerical simulation to construct a large volume of
training data, and then train machine learning models to solve the inverse problem, i.e. to identify
particle shapes and sizes from spectra.
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Figure 1: 10 randomly sampled emissivity spectra from each class.
Columns (shapes): triangular prisms, parallelepipeds, sphere, and wire.
Rows (materials): Au, SiN, and SiO2.

Figure 2: Four
nanoparticle shapes
in the dataset.

Our contribution We build an inverse model as an experimental analytics tool, where a user can
input an experimental emissivity spectrum of a nanoparticle sample and determine the shape, size, and
material of their sample. In addition to numerical simulation data, we also include data augmentation
by a forward model [5] that predicts the numerical simulation results. We compare random forests and
5 neural network architectures including fully connected networks and convolutional neural networks.
We provide the first machine learning based inverse models for automated emissivity spectrum
analysis. Our models achieve 85.9% top-1 accuracy on shape classification and 0.91 correlation on
size regression.

2 Related work

Most related to our work, Elzouka et al. [5] study the inverse problem in a different context, where
they want to design nanoparticles to achieve certain optical properties. Due to the different motivation,
their model is not optimized for automated spectrum analysis, and the model accuracy is measured in
the spectrum space (by comparing target spectrum to the spectra of the predicted particles). Their
approach to the inverse problem is also different: After training a decision tree model for the forward
problem, they perform inverse design by finding the output leaf on the decision tree whose value
corresponds closest to the target spectrum.

Additionally, He et al. [6] use 2-layer fully connected neural networks for both forward prediction
of optical properties and inverse prediction of nanoparticle dimension parameters. He et al. focus
on size regression of gold particles. We study a more general prediction problem on a larger dataset
(their dataset contains 3118 nanoparticles and 57 points on each spectrum, compared to 160,000
nanoparticles in ours), and also compare more diverse machine learning models.

3 Methods

Dataset Construction. Our dataset was taken from [5] with permission from the authors and
constructed by solving Maxwell’s equations for the emissivity spectra of 15625 particles. The dataset
was evenly divided between three materials: gold (Au), silicone dioxide (SiO2), and silicon nitride
(SiN); with the same shape distribution per material: 38.5% triangular prisms, 38.5% parallelepipeds,
15% wires, 8% spheres (shapes visualized in Figure 2). The size of each particle is determined by
four parameters: the log of the area over volume, and the shortest, middle, and longest dimensions.

The emissivity spectrum of each nanoparticle is represented by the emissivity at 400 different angular
frequencies, chosen in a logarithmic spacing from 1013 rad/s to 0.8 × 1014 rad/s. These angular
frequencies can be converted to wavelengths, and represent a wavelength region from roughly 1900
to 19000 nm, meaning these emissivity values are located in the infrared region.
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We use 50% of the numerical simulation data (7812 particles) for training, 25% (3906 particles) for
validation, and the remaining 25% for test.

We use the forward design model trained on the same numerical simulation dataset in [5] as data
augmentation. This model was then used to predict spectra for 20 × 7812 ≈ 160, 000 particles as
additional training data.

Prediction task. Given the 400-point emissivity spectrum as input, we want to predict the shape,
material, and dimensions (size) of the nanoparticle. We measure classification performance by top-1
accuracy, and we measure size regression performance by mean square error (MSE).

Random forest models. We use random forest classifiers and regressors from scikit-learn [7] to predict
material and shape classification and size regression. The random forests have 50 trees, with 20 of
the 400 spectral inputs available for each tree. Changing other hyper-parameters from scikit-learn
defaults does not improve model performance, and therefore were left at default values.

Fully-connected networks. We include three types of fully-connected networks in our model compari-
son: a one-layer neural network with 512 hidden units, a two-layer neural network with 512 and 128
hidden units, and a three-layer neural network with 512, 256, and 64 hidden units. All of them use
dropout and ReLU activation.

Convolutional neural networks. We adapt the popular AlexNet [8] and ResNet [9] architectures from
the computer vision community by replacing 2D-convolutions with 1D-convolutions. For AlexNet,
we keep the kernel size and stride fixed from the original AlexNet architecture, but reduce the number
of channels. For ResNet, we replace the 3x3 2D-convolution with 1D-convolution of kernel size 3 in
the basic block. and keep the overall ResNet-18 architecture.

In addition to the 400-point emissivity data, we also include log emissivity, and the finite-difference
derivatives of emissivity and log emissivity in the inputs. To investigate the effects of including the
additional features, we report ablation result in Table 1 for ResNet18-1D on only raw emissivity data
as “ResNet18-1D (1 channel input)”.

After a coarse hyperparameter search within our computing budget, we use Adam optimizer with
learning rate 1e-4 and batch size 64 for 20 epochs for neural networks.

4 Results

Material classification proved very easy for random forest models as well as neural networks.
The random forest model produced 100 percent classification accuracy and most neural networks
attempted also achieve >99% material classification accuracy.

Shape classification and size regression results are shown in Table 1 and Table 2. The ResNet-based
model achieves the highest 85.9% top-1 accuracy for shape classification, while being comparable to
the random forest model in size regression. The overall MSE of the random forest model corresponds
to a 0.91 correlation between the predicted values and the true values.

The shape classification and size regression accuracy largely depends on the shape. For spheres, both
classification and regression are near perfect, with 99% classification accuracy and 0.004 MSE. In
contrast, triangular prisms have by far the largest MSE (6.08), and are more often confused with
parallel pipes in shape classification.

Why does random forest work well for size regression but not shape classification? For size re-
gression, the emissivity at certain wavelengths already contains a lot of information for recovering
log(area/volume) and shortest dimension. When examining feature importance in random forest,
a particular wavelength is extremely useful with feature importance of over 0.4. This is especially
striking when compared with the shape classification, where no single wavelength has a feature
importance above 0.04. This gives a hint that more complex models, such as convolutional neural
networks, might be necessary for identifying the full nanoparticle geometry.

Multi-task training. We experiment with multi-task training by using a multi-head model to predict
shape classification, material classification, and size regression at the same time. Contrary to our
expectation that multi-task training would increase performance, it degrades performance in both
shape classification and size regression. For ResNet18-1D, the shape classification accuracy drops
from 85.9% to 81.8%, while the size regression average MSE increases from 2.96 to 3.47.
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Classification Top-1 Accuracy

Model Triangle Prism Parallelpiped Sphere Wire Average

Random forest 0.72 0.63 0.99 0.78 0.78
One-layer neural network 0.549 0.177 0.938 0.578 0.561
Two-layer neural network 0.645 0.216 0.919 0.478 0.565
Three-layer neural network 0.615 0.177 0.938 0.486 0.554
AlexNet-1D 0.487 0.385 0.997 0.796 0.667
ResNet18-1D 0.803 0.768 0.997 0.867 0.859
ResNet18-1D (1-channel input) 0.762 0.691 0.993 0.888 0.834

Table 1: Shape classification top-1 accuracies when trained on all materials combined.

Mean Square Error

Model Short Dim Middle Dim Long Dim log Area/Vol

Random forest 0.068 0.296 16.113 0.029
One-layer neural network 0.269 1.517 31.334 0.182
Two-layer neural network 0.252 1.894 32.443 0.302
Three-layer neural network 0.289 2.177 31.987 0.372
AlexNet-1D 0.317 1.408 18.003 0.307
ResNet18-1D 0.098 0.263 11.414 0.055

Table 2: Size regression mean square error.

Joint training on materials. When we compare joint training on all three materials together against
training separate models for each material, we find no significant difference in model performance,
likely because the spectra for different materials are highly distinct as we have seen in the near perfect
material classification results.

Effects of data augmentation. 20x data augmentation increases shape classification performance on
ResNet18-1D (from 83% to 85.9%, but beyond that model performance does not increase with more
data augmentation, even when we increase the data augmentation ratio to 300x.

5 Discussion

Machine learning for material simulation and analysis is an exciting research direction. We have built
models capable of reliably predicting material, size, and shape of nanoparticles from their emissivity
spectra. Our work shows that automated nanoparticle emissivity spectral analysis with machine
learning has the potential to replace more time intensive analytical techniques.

We also provide a starting point to navigate the design choices in models and training procedures for
the nanoparticle geometry identification problem. In particular, we show that data augmentation by a
forward model can increase the performance of the inverse model.

In addition to being a practical tool in nanoparticle synthesis, the interpretable random forest models
also discover scientific insights about the interactions between nanoparticles and light. The wave-
lengths at indices 293 and 269 contain crucial information for determining log(area/volume) and the
shortest dimension of the nanoparticle, respectively. The random forest models also shed light on
what emissivity wavelengths are distinct to the different shapes. Strikingly, the same wavelength at
index 269 is the most important wavelength in size regression for the shortest dimension as well as
in sphere classification. This knowledge helps nanoscientists build increased understanding of how
emissivity at certain wavelengths is connected to the morphology of nanoparticles.

Together, our results suggest that machine learning models are not only useful predictive tools in
automated spectrum analysis, but also valuable tools for analyzing experimental data and gaining
new scientific insights.
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